Take Home Assignment 1

1. A cylindrical container is to be manufactured with a volume of 200 cubic centimeters. The cylinder will be cut from sheets of stainless steel that cost $\$ 50.00 / \mathrm{m}^{2}$, and the caps will be cut from sheets of a different grade of stainless steel that cost $\$ 75.00 / \mathrm{m}^{2}$. Find the dimensions of the can that minimize the cost of the materials.
Find the rate of change $d C / d V$ of the (minimal) materials-cost (C) of the container with respect to its volume (V).

If the height of the cylinder is h and the radius of the base is r, both measured in cm , then the cost of materials is

$$
c=\frac{1}{10000}\left(100 \pi h r+150 \pi r^{2}\right)=0.01 \pi h r+0.015 \pi r^{2} .
$$

The dimensions are constrained by the volume,

$$
\pi r^{2} h=200
$$

and the Lagrangian is therefore

$$
L(h, r, \lambda)=0.01 \pi h r+0.015 \pi r^{2}-\lambda\left(\pi r^{2} h-200\right)
$$

The stationarity equations are

$$
\begin{aligned}
L_{h}=0 & \Rightarrow \quad 0.01 \pi r-\lambda \pi r^{2}=0 \\
L_{r}=0 & \Rightarrow \quad 0.01 \pi h+0.03 \pi r-2 \lambda \pi r h=0 \\
L_{\lambda}=0 & \Rightarrow 200-\pi r^{2} h=0
\end{aligned}
$$

Solving the first two equations for λ gives

$$
\lambda=\frac{0.01}{r}=\frac{0.005}{r}+\frac{0.015}{h} .
$$

Clearing denominators and simplifying shows that

$$
h=3 r .
$$

Substituting for h in the constraint gives

$$
3 \pi r^{3}=200 \Longrightarrow r^{*}=\sqrt[3]{\frac{200}{3 \pi}} \approx 2.77
$$

which means that $h^{*}=3 r^{*}=\sqrt[3]{\frac{1800}{\pi}} \approx 8.31$ and the minimal materials cost is

$$
c^{*}=0.01 \pi h^{*} r^{*}+0.015 \pi\left(r^{*}\right)^{2} \approx \$ 2.53 .
$$

The envelope theorem tells us that

$$
\frac{d c^{*}}{d V}=\lambda^{*}=\frac{0.01}{r^{*}} \approx 0.0036
$$

2. Find the average distance to the origin of points in the ball

$$
x^{2}+y^{2}+z^{2} \leq R^{2} .
$$

The average distance to the origin of points in the ball of radius R centered at the origin, B_{R}, is given by

$$
\frac{1}{\operatorname{Vol}\left(B_{R}\right)} \iiint_{B_{R}} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

This integral is easiest to compute in spherical coordinates,

$$
\iiint_{B_{R}} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} r \cdot r^{2} \sin \theta d r d \theta d \phi=\pi R^{4}
$$

so the average distance to the origin is

$$
\frac{\pi R^{4}}{\frac{4}{3} \pi R^{3}}=\frac{3}{4} R
$$

3. Find the singular value decomposition of the matrix

$$
A=\left[\begin{array}{rrr}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

First,

$$
A A^{T}=\left[\begin{array}{cc}
17 & 8 \\
8 & 17
\end{array}\right]
$$

which has characteristic equation $\lambda^{2}-34 \lambda+225=0$ and eigenvalues $\lambda_{1}=25$ and $\lambda_{2}=9$, and corresponding orthonormal eigenvectors

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad \mathbf{u}_{2}=\left[\begin{array}{r}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Next,

$$
A^{T} A=\left[\begin{array}{rrr}
13 & 12 & 2 \\
12 & 13 & -2 \\
2 & -2 & 8
\end{array}\right]
$$

Recall that $A^{T} A$ and $A A^{T}$ have the same nonzero eigenvalues, so the eigenvalues of $A^{T} A$ are $\lambda_{1}=25, \lambda_{2}=9$ and $\lambda_{3}=0$, with corresponding orthonormal eigenvectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
\frac{1}{3 \sqrt{2}} \\
-\frac{1}{3 \sqrt{2}} \\
\frac{4}{3 \sqrt{2}}
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-\frac{2}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] .
$$

The singular values of A are $\sigma_{1}=\sqrt{25}=5$ and $\sigma_{2}=\sqrt{9}=3$ and singular value decomposition of A is

$$
A=\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]\left[\begin{array}{rrr}
\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & -\frac{2}{3} \\
\frac{1}{\sqrt{2}} & -\frac{1}{3 \sqrt{2}} & \frac{2}{3} \\
0 & \frac{4}{3 \sqrt{2}} & \frac{1}{3}
\end{array}\right]^{T}
$$

4. Find an orthogonal transformation of \mathbb{R}^{3} that transforms the quadratic form

$$
Q(x, y, z)=x^{2}+2 x y+4 x z+2 y^{2}+2 y z+z^{2}
$$

to the diagonal form

$$
\mathcal{Q}(u, v, w)=\alpha u^{2}+\beta v^{2}+\gamma w^{2}
$$

(and find the coefficients α, β and γ).

The quadratic form $Q(x, y, z)$ may be written as

$$
Q(x, y, z)=\mathbf{x}^{T} A_{Q} \mathbf{x}
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } A_{Q}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Since A_{Q} is symmetric, we can find matrices U and D such that

$$
A=U^{T} D U
$$

with

$$
D=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \quad \text { and } U=\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]
$$

where λ_{1}, λ_{2} and λ_{3} are the eigenvalues of A and U is an orthogonal matrix with column \mathbf{u}_{i} being an eigenvector belonging to λ_{i}. Therefore, for $\mathbf{x} \in \mathbb{R}^{3}$, we have

$$
\mathbf{x}^{T} A \mathbf{x}=\mathbf{x}^{T}\left(U^{T} D U\right) \mathbf{x}=(U \mathbf{x})^{T} D(U \mathbf{x})=\mathbf{u}^{T} D \mathbf{u}=\lambda_{1} u^{2}+\lambda_{2} v^{2}+\lambda_{3} w^{2}
$$

where

$$
\mathbf{u}=U \mathbf{x}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

To find D and U, we solve the characteristic equation of A :

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=(1-\lambda)^{2}(4-\lambda)
$$

Thus the eigenvalues of A are $\lambda_{1}=\lambda_{2}=1$ and $\lambda_{3}=4$.
To find the columns of U, we solve $(A-I) \mathbf{x}=\mathbf{0}$ and $(A-4 I) \mathbf{x}=\mathbf{0}$. First an orthogonal basis for the set of solutions of $(A-I) \mathbf{x}=\mathbf{0}$ is given by

$$
\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

and an orthonormal basis is given by

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
1 / \sqrt{6} \\
1 / \sqrt{6} \\
-2 / \sqrt{6}
\end{array}\right] \quad \text { and } \quad \mathbf{u}_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]
$$

The set of solutions to $(A-4 I) \mathbf{x}=\mathbf{0}$ is spanned by the vector $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$, so

$$
\mathbf{u}_{3}=\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
$$

Thus, the required orthogonal transformation of \mathbb{R}^{3} is given by the matrix

$$
U=\left[\begin{array}{rrr}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
-2 / \sqrt{6} & 0 & 1 / \sqrt{3}
\end{array}\right]
$$

and the diagonalized form is given by

$$
\mathcal{Q}(u, v, w)=u^{2}+v^{2}+4 w^{2} .
$$

5. Find the unit tangent, normal and binormal, $\hat{\mathbf{t}}, \hat{\mathbf{n}}, \hat{\mathbf{b}}$, and the curvature κ as functions of t for the helix

$$
\mathbf{r}(t)=a \cos (\omega t) \mathbf{i}+a \sin (\omega t) \mathbf{j}+b t \mathbf{k}
$$

First,

$$
\hat{\mathbf{t}}=\frac{d \mathbf{r} / d t}{|d \mathbf{r} / d t|}=\frac{1}{\sqrt{a^{2} \omega^{2}+b^{2}}}(-a \omega \sin (\omega t) \mathbf{i}+a \omega \cos (\omega t) \mathbf{j}+b \mathbf{k})
$$

which also shows that

$$
\frac{d s}{d t}=\left|\frac{d \mathbf{r}}{d t}\right|=\sqrt{a^{2} \omega^{2}+b^{2}}
$$

Next,

$$
\hat{\mathbf{n}}=\frac{d \hat{\mathbf{t}} / d s}{|d \hat{\mathbf{t}} / d s|}=\frac{(d \hat{\mathbf{t}} / d t)(d t / d s)}{\mid d \hat{\mathbf{t}} / d t)(d t / d s) \mid}=\frac{d \hat{\mathbf{t}} / d t}{|d \hat{\mathbf{t}} / d t|}=-\cos (\omega t) \mathbf{i}-\sin (\omega t) \mathbf{j}
$$

where

$$
\left|\frac{d \hat{\mathbf{t}}}{d t}\right|=\frac{a \omega^{2}}{\sqrt{a^{2} \omega^{2}+b^{2}}}
$$

For the binormal we have

$$
\hat{\mathbf{b}}=\hat{\mathbf{t}} \times \hat{\mathbf{n}}=\frac{1}{\sqrt{a^{2} \omega^{2}+b^{2}}}(b \sin (\omega t) \mathbf{i}-b \cos (\omega t) \mathbf{j}+a \omega \mathbf{k})
$$

Finally, from

$$
\left|\frac{d \hat{\mathbf{t}}}{d t}\right|=\left|\frac{d \hat{\mathbf{t}}}{d s}\right|\left|\frac{d s}{d t}\right|=\kappa\left|\frac{d s}{d t}\right|
$$

we have

$$
\kappa=\left|\frac{d \hat{\mathbf{t}}}{d t}\right|\left|\frac{d s}{d t}\right|^{-1}=\frac{a \omega^{2}}{a^{2} \omega^{2}+b^{2}}
$$

i.e., the helix has constant curvature for all t, which is not surprising when you think about it.
6. A function $\varphi(x, y, z)$ (a scalar field) is called radial if it is constant on spheres around the origin, i.e., $\varphi(x, y, z)=\varphi(r)$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
a. What is the Laplacian of a radial function? (Suggestion: use spherical coordinates).

In Spherical coordinates the Laplacian is given by

$$
\nabla^{2} \varphi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \varphi}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} \varphi}{\partial \phi^{2}},
$$

and so for a radial function (that does not depend on θ and ϕ), the Laplacian is simply

$$
\nabla^{2} \varphi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)=\frac{1}{r^{2}}\left(2 r \frac{\partial \varphi}{\partial r}+r^{2} \frac{\partial^{2} \varphi}{\partial r^{2}}\right)=\frac{2}{r} \cdot \frac{\partial \varphi}{\partial r}+\frac{\partial^{2} \varphi}{\partial r^{2}}
$$

b. A function $u(x, y, z)$ is harmonic if $\nabla^{2} u=0$. Show that a radial harmonic function $u(x, y, z)$ defined in all of \mathbb{R}^{3} must be constant.
If u is radial and harmonic, then

$$
\frac{2}{r} u^{\prime}+u^{\prime \prime}=0
$$

where u^{\prime} and $u^{\prime \prime}$ are derivatives with respect to r. It follows that either $u^{\prime}=0$ or

$$
\frac{u^{\prime \prime}}{u^{\prime}}=-\frac{2}{r} \Longrightarrow \ln \left|u^{\prime}\right|=-2 \ln r+C \Longrightarrow u^{\prime}=\frac{A}{r^{2}},
$$

where $A= \pm e^{C}$. This would imply that $u=-\frac{A}{r}+k$, making u undefined at the origin ($r=0$), so it must be the case that $u^{\prime}=0$ and u is constant.

