
UCSC AMS 211 FALL 2015

Take Home Assignment 1

1. A cylindrical container is to be manufactured with a volume of 200 cubic centimeters. The
cylinder will be cut from sheets of stainless steel that cost $50.00/ m2, and the caps will be cut
from sheets of a different grade of stainless steel that cost $75.00/ m2. Find the dimensions of
the can that minimize the cost of the materials.

Find the rate of change dC/dV of the (minimal) materials-cost (C) of the container with respect
to its volume (V ).

If the height of the cylinder is h and the radius of the base is r, both measured in cm, then
the cost of materials is

c =
1

10000

(
100πhr + 150πr2

)
= 0.01πhr + 0.015πr2.

The dimensions are constrained by the volume,

πr2h = 200

and the Lagrangian is therefore

L(h, r, λ) = 0.01πhr + 0.015πr2 − λ(πr2h− 200).

The stationarity equations are

Lh = 0 ⇒ 0.01πr − λπr2 = 0

Lr = 0 ⇒ 0.01πh+ 0.03πr − 2λπrh = 0

Lλ = 0 ⇒ 200− πr2h = 0

Solving the first two equations for λ gives

λ =
0.01

r
=

0.005

r
+

0.015

h
.

Clearing denominators and simplifying shows that

h = 3r.

Substituting for h in the constraint gives

3πr3 = 200 =⇒ r∗ =
3

√
200

3π
≈ 2.77,

which means that h∗ = 3r∗ = 3

√
1800
π
≈ 8.31 and the minimal materials cost is

c∗ = 0.01πh∗r∗ + 0.015π(r∗)2 ≈ $2.53.

The envelope theorem tells us that

dc∗

dV
= λ∗ =

0.01

r∗
≈ 0.0036.
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2. Find the average distance to the origin of points in the ball

x2 + y2 + z2 ≤ R2.

The average distance to the origin of points in the ball of radius R centered at the origin, BR,
is given by

1

Vol(BR)

˚
BR

√
x2 + y2 + z2 dx dy dz.

This integral is easiest to compute in spherical coordinates,˚
BR

√
x2 + y2 + z2 dx dy dz =

ˆ 2π

0

ˆ π

0

ˆ R

0

r · r2 sin θ dr dθ dφ = πR4

so the average distance to the origin is

πR4

4
3
πR3

=
3

4
R.

3. Find the singular value decomposition of the matrix

A =

[
3 2 2
2 3 −2

]
.

First,

AAT =

[
17 8
8 17

]
which has characteristic equation λ2 − 34λ + 225 = 0 and eigenvalues λ1 = 25 and λ2 = 9, and
corresponding orthonormal eigenvectors

u1 =

[ 1√
2
1√
2

]
and u2 =

[ 1√
2

− 1√
2

]
.

Next,

ATA =

 13 12 2
12 13 −2
2 −2 8

 .
Recall that ATA and AAT have the same nonzero eigenvalues, so the eigenvalues of ATA are
λ1 = 25, λ2 = 9 and λ3 = 0, with corresponding orthonormal eigenvectors

v1 =

 1√
2
1√
2

0

 , v2 =

 1
3
√
2

− 1
3
√
2

4
3
√
2

 and v3 =

 −2
3
2
3
1
3

 .
The singular values of A are σ1 =

√
25 = 5 and σ2 =

√
9 = 3 and singular value decomposition

of A is

A =

[ 1√
2

1√
2

1√
2
− 1√

2

] [
5 0 0
0 3 0

] 1√
2

1
3
√
2
−2

3
1√
2
− 1

3
√
2

2
3

0 4
3
√
2

1
3

T

4. Find an orthogonal transformation of R3 that transforms the quadratic form

Q(x, y, z) = x2 + 2xy + 4xz + 2y2 + 2yz + z2

to the diagonal form
Q(u, v, w) = αu2 + βv2 + γw2

(and find the coefficients α, β and γ).
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The quadratic form Q(x, y, z) may be written as

Q(x, y, z) = xTAQx,

where

x =

 x
y
z

 and AQ =

 1 1 2
1 2 1
2 1 1

 .
Since AQ is symmetric, we can find matrices U and D such that

A = UTDU,

with

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 and U =
[
u1 u2 u3

]
,

where λ1, λ2 and λ3 are the eigenvalues of A and U is an orthogonal matrix with column ui being
an eigenvector belonging to λi. Therefore, for x ∈ R3, we have

xTAx = xT (UTDU)x = (Ux)TD(Ux) = uTDu = λ1u
2 + λ2v

2 + λ3w
2,

where

u = Ux =

 u
v
w

 .
To find D and U , we solve the characteristic equation of A:

det(A− λI) = −λ3 + 6λ2 − 9λ+ 4 = (1− λ)2(4− λ).

Thus the eigenvalues of A are λ1 = λ2 = 1 and λ3 = 4.

To find the columns of U , we solve (A − I)x = 0 and (A − 4I)x = 0. First an orthogonal
basis for the set of solutions of (A− I)x = 0 is given by 1

1
−2

 and

 1
−1

0

 ,
and an orthonormal basis is given by

u1 =

 1/
√

6

1/
√

6

−2/
√

6

 and u2 =

 1/
√

2

−1/
√

2
0

 .
The set of solutions to (A− 4I)x = 0 is spanned by the vector x = [1 1 1]T , so

u3 =

 1/
√

3

1/
√

3

1/
√

3

 .
Thus, the required orthogonal transformation of R3 is given by the matrix

U =

 1/
√

6 1/
√

2 1/
√

3

1/
√

6 −1/
√

2 1/
√

3

−2/
√

6 0 1/
√

3


and the diagonalized form is given by

Q(u, v, w) = u2 + v2 + 4w2.
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5. Find the unit tangent, normal and binormal, t̂, n̂, b̂, and the curvature κ as functions of t for
the helix

r(t) = a cos(ωt)i + a sin(ωt)j + btk.

First,

t̂ =
dr/dt

|dr/dt|
=

1√
a2ω2 + b2

(−aω sin(ωt)i + aω cos(ωt)j + bk) ,

which also shows that
ds

dt
=

∣∣∣∣drdt
∣∣∣∣ =
√
a2ω2 + b2.

Next,

n̂ =
dt̂/ds∣∣dt̂/ds∣∣ =

(dt̂/dt)(dt/ds)∣∣dt̂/dt)(dt/ds)∣∣ =
dt̂/dt∣∣dt̂/dt∣∣ = − cos(ωt)i− sin(ωt)j,

where ∣∣∣∣dt̂dt
∣∣∣∣ =

aω2

√
a2ω2 + b2

.

For the binormal we have

b̂ = t̂× n̂ =
1√

a2ω2 + b2
(b sin(ωt)i− b cos(ωt)j + aωk) .

Finally, from ∣∣∣∣dt̂dt
∣∣∣∣ =

∣∣∣∣dt̂ds
∣∣∣∣ ∣∣∣∣dsdt

∣∣∣∣ = κ

∣∣∣∣dsdt
∣∣∣∣

we have

κ =

∣∣∣∣dt̂dt
∣∣∣∣ ∣∣∣∣dsdt

∣∣∣∣−1 =
aω2

a2ω2 + b2
,

i.e., the helix has constant curvature for all t, which is not surprising when you think about it.

6. A function ϕ(x, y, z) (a scalar field) is called radial if it is constant on spheres around the origin,

i.e., ϕ(x, y, z) = ϕ(r), where r =
√
x2 + y2 + z2.

a. What is the Laplacian of a radial function? (Suggestion: use spherical coordinates).

In Spherical coordinates the Laplacian is given by

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin θ

∂2ϕ

∂φ2
,

and so for a radial function (that does not depend on θ and φ), the Laplacian is simply

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
=

1

r2

(
2r
∂ϕ

∂r
+ r2

∂2ϕ

∂r2

)
=

2

r
· ∂ϕ
∂r

+
∂2ϕ

∂r2.

b. A function u(x, y, z) is harmonic if ∇2u = 0. Show that a radial harmonic function u(x, y, z)
defined in all of R3 must be constant.

If u is radial and harmonic, then

2

r
u′ + u′′ = 0,

where u′ and u′′ are derivatives with respect to r. It follows that either u′ = 0 or

u′′

u′
= −2

r
=⇒ ln |u′| = −2 ln r + C =⇒ u′ =

A

r2
,
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where A = ±eC . This would imply that u = −A
r

+ k, making u undefined at the origin

(r = 0), so it must be the case that u′ = 0 and u is constant.


