Take Home Assignment 1

1. A cylindrical container is to be manufactured with a volume of 200 cubic centimeters. The cylinder will be cut from sheets of stainless steel that cost $50.00/ m², and the caps will be cut from sheets of a different grade of stainless steel that cost $75.00/ m². Find the dimensions of the can that minimize the cost of the materials.

Find the rate of change \(dC/dV \) of the (minimal) materials-cost \((C) \) of the container with respect to its volume \((V) \).

If the height of the cylinder is \(h \) and the radius of the base is \(r \), both measured in cm, then the cost of materials is

\[
c = \frac{1}{100000} (100\pi hr + 150\pi r^2) = 0.01\pi hr + 0.015\pi r^2.
\]

The dimensions are constrained by the volume,

\[
\pi r^2 h = 200
\]

and the Lagrangian is therefore

\[
L(h, r, \lambda) = 0.01\pi hr + 0.015\pi r^2 - \lambda(\pi r^2 h - 200).
\]

The stationarity equations are

\[
\begin{align*}
L_h &= 0 \quad \Rightarrow \quad 0.01\pi r - \lambda \pi r^2 = 0 \\
L_r &= 0 \quad \Rightarrow \quad 0.01\pi h + 0.03\pi r - 2\lambda \pi rh = 0 \\
L_\lambda &= 0 \quad \Rightarrow \quad 200 - \pi r^2 h = 0
\end{align*}
\]

Solving the first two equations for \(\lambda \) gives

\[
\lambda = \frac{0.01}{r} = \frac{0.005}{r} + \frac{0.015}{h}.
\]

Clearing denominators and simplifying shows that

\[
h = 3r.
\]

Substituting for \(h \) in the constraint gives

\[
3\pi r^3 = 200 \quad \Rightarrow \quad r^* = \sqrt[3]{\frac{200}{3\pi}} \approx 2.77,
\]

which means that \(h^* = 3r^* = \sqrt[3]{\frac{1800}{\pi}} \approx 8.31 \) and the minimal materials cost is

\[
c^* = 0.01\pi h^* r^* + 0.015\pi (r^*)^2 \approx $2.53.
\]

The envelope theorem tells us that

\[
\frac{dc^*}{dV} = \lambda^* = \frac{0.01}{r^*} \approx 0.0036.
\]
2. Find the average distance to the origin of points in the ball

\[x^2 + y^2 + z^2 \leq R^2. \]

The average distance to the origin of points in the ball of radius \(R \) centered at the origin, \(B_R \), is given by

\[
\frac{1}{\text{Vol}(B_R)} \iiint_{B_R} \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz.
\]

This integral is easiest to compute in spherical coordinates,

\[
\iiint_{B_R} \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz = \int_0^{2\pi} \int_0^\pi \int_0^R r \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi = \pi R^4
\]

so the average distance to the origin is

\[
\frac{\pi R^4}{\frac{4}{3} \pi R^3} = \frac{3}{4} R.
\]

3. Find the singular value decomposition of the matrix

\[A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}. \]

First,

\[AA^T = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} \]

which has characteristic equation \(\lambda^2 - 34\lambda + 225 = 0 \) and eigenvalues \(\lambda_1 = 25 \) and \(\lambda_2 = 9 \), and corresponding orthonormal eigenvectors

\[u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } u_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}. \]

Next,

\[A^T A = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}. \]

Recall that \(A^T A \) and \(AA^T \) have the same nonzero eigenvalues, so the eigenvalues of \(A^T A \) are \(\lambda_1 = 25 \), \(\lambda_2 = 9 \) and \(\lambda_3 = 0 \), with corresponding orthonormal eigenvectors

\[v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \text{ } v_2 = \begin{bmatrix} \frac{1}{3 \sqrt{2}} \\ \frac{1}{3 \sqrt{2}} \\ \frac{2}{3 \sqrt{2}} \end{bmatrix} \text{ and } v_3 = \begin{bmatrix} -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}. \]

The singular values of \(A \) are \(\sigma_1 = \sqrt{25} = 5 \) and \(\sigma_2 = \sqrt{9} = 3 \) and singular value decomposition of \(A \) is

\[A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & \frac{1}{3} \end{bmatrix}^T. \]

4. Find an orthogonal transformation of \(\mathbb{R}^3 \) that transforms the quadratic form

\[Q(x, y, z) = x^2 + 2xy + 4xz + 2y^2 + 2yz + z^2 \]

to the diagonal form

\[Q(u, v, w) = \alpha u^2 + \beta v^2 + \gamma w^2 \]

(and find the coefficients \(\alpha, \beta \) and \(\gamma \)).
The quadratic form $Q(x, y, z)$ may be written as

$$Q(x, y, z) = x^T A_Q x,$$

where

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{and} \quad A_Q = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}.$$

Since A_Q is symmetric, we can find matrices U and D such that

$$A = U^T D U,$$

with

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \quad \text{and} \quad U = [u_1 \ u_2 \ u_3],$$

where λ_1, λ_2 and λ_3 are the eigenvalues of A and U is an orthogonal matrix with column u_i being an eigenvector belonging to λ_i. Therefore, for $x \in \mathbb{R}^3$, we have

$$x^T A x = x^T (U^T D U) x = (U x)^T D (U x) = u^T D u = \lambda_1 u_1^2 + \lambda_2 u_2^2 + \lambda_3 u_3^2,$$

where

$$u = U x = \begin{bmatrix} u \\ v \\ w \end{bmatrix}.$$

To find D and U, we solve the characteristic equation of A:

$$\det(A - \lambda I) = -\lambda^3 + 6\lambda^2 - 9\lambda + 4 = (1 - \lambda)^2 (4 - \lambda).$$

Thus the eigenvalues of A are $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 4$.

To find the columns of U, we solve $(A - I)x = 0$ and $(A - 4I)x = 0$. First an orthogonal basis for the set of solutions of $(A - I)x = 0$ is given by

$$\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix},$$

and an orthonormal basis is given by

$$u_1 = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{bmatrix} \quad \text{and} \quad u_2 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}.$$

The set of solutions to $(A - 4I)x = 0$ is spanned by the vector $x = [1 \ 1 \ 1]^T$, so

$$u_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}.$$

Thus, the required orthogonal transformation of \mathbb{R}^3 is given by the matrix

$$U = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \end{bmatrix}$$

and the diagonalized form is given by

$$Q(u, v, w) = u^2 + v^2 + 4w^2.$$
5. Find the unit tangent, normal and binormal, \(\hat{t}, \hat{n}, \hat{b} \), and the curvature \(\kappa \) as functions of \(t \) for the helix

\[r(t) = a \cos(\omega t) \mathbf{i} + a \sin(\omega t) \mathbf{j} + bt \mathbf{k}. \]

First,

\[\hat{t} = \frac{dr}{dt} = \frac{1}{\sqrt{a^2 \omega^2 + b^2}} (-a \omega \sin(\omega t) \mathbf{i} + a \omega \cos(\omega t) \mathbf{j} + b \mathbf{k}), \]

which also shows that

\[\frac{ds}{dt} = \left| \frac{dr}{dt} \right| = \sqrt{a^2 \omega^2 + b^2}. \]

Next,

\[\hat{n} = \frac{\hat{t}}{\left| \frac{d\hat{t}}{ds} \right|} = \frac{\frac{d\hat{t}}{dt}(dt/ds)}{\left| \frac{d\hat{t}}{dt} \right|} = \frac{\hat{t}}{\left| \frac{d\hat{t}}{dt} \right|} = -\cos(\omega t) \mathbf{i} - \sin(\omega t) \mathbf{j}, \]

where

\[\left| \frac{d\hat{t}}{dt} \right| = \frac{a \omega^2}{\sqrt{a^2 \omega^2 + b^2}}. \]

For the binormal we have

\[\hat{b} = \hat{t} \times \hat{n} = \frac{1}{\sqrt{a^2 \omega^2 + b^2}} (b \sin(\omega t) \mathbf{i} - b \cos(\omega t) \mathbf{j} + a \omega \mathbf{k}). \]

Finally, from

\[\left| \frac{d\hat{t}}{dt} \right| = \frac{ds}{dt} \mid \frac{ds}{dt} \mid = \kappa \left| \frac{ds}{dt} \right| \]

we have

\[\kappa = \left| \frac{d\hat{t}}{dt} \right| \left| \frac{ds}{dt} \right|^{-1} = \frac{a \omega^2}{a^2 \omega^2 + b^2}, \]

i.e., the helix has constant curvature for all \(t \), which is not surprising when you think about it.

6. A function \(\varphi(x, y, z) \) (a scalar field) is called radial if it is constant on spheres around the origin, i.e., \(\varphi(x, y, z) = \varphi(r) \), where \(r = \sqrt{x^2 + y^2 + z^2} \).

a. What is the Laplacian of a radial function? (Suggestion: use spherical coordinates).

In spherical coordinates the Laplacian is given by

\[\nabla^2 \varphi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \varphi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \varphi}{\partial \phi^2}, \]

and so for a radial function (that does not depend on \(\theta \) and \(\phi \)), the Laplacian is simply

\[\nabla^2 \varphi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) = \frac{1}{r^2} \left(2r \frac{\partial \varphi}{\partial r} + r^2 \frac{\partial^2 \varphi}{\partial r^2} \right) = \frac{2}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial r^2}. \]

b. A function \(u(x, y, z) \) is harmonic if \(\nabla^2 u = 0 \). Show that a radial harmonic function \(u(x, y, z) \) defined in all of \(\mathbb{R}^3 \) must be constant.

If \(u \) is radial and harmonic, then

\[\frac{2}{r} u' + u'' = 0, \]

where \(u' \) and \(u'' \) are derivatives with respect to \(r \). It follows that either \(u' = 0 \) or

\[\frac{u''}{u'} = -\frac{2}{r} \implies \ln |u'| = -2 \ln r + C \implies u' = \frac{A}{r^2}, \]
where $A = \pm e^C$. This would imply that $u = -\frac{A}{r} + k$, making u undefined at the origin ($r = 0$), so it must be the case that $u' = 0$ and u is constant.