Take Home Assignment 2

1. Find the area of the region bounded by the curve $x^{2 / 3}+9 y^{2 / 3}=4$.

Hint: Use a parametrization of form $x=\alpha \cos ^{n} \vartheta$ and $y=\beta \sin ^{n} \vartheta$ for the curve.
From Green's theorem (see section 11.3) it follows that the area of the region bounded by a simple closed curve γ in the plane is given by the integral

$$
\frac{1}{2} \oint_{\gamma} x d y-y d x
$$

The given curve can be parametrized by $x=8 \cos ^{3} \vartheta$ and $y=\frac{8}{27} \sin ^{3} \vartheta$ (with $0 \leq \vartheta \leq 2 \pi$), so $d x=-24 \cos ^{2} \vartheta \sin \vartheta d \vartheta$ and $d y=\frac{24}{27} \sin ^{2} \vartheta \cos \vartheta d \vartheta$. Hence the area of the specified region is given by

$$
\begin{aligned}
A=\frac{1}{2} \oint_{\gamma} x d y-y d x & =\frac{96}{27} \int_{0}^{2 \pi} \cos ^{4} \vartheta \sin ^{2} \vartheta+\cos ^{2} \vartheta \sin ^{4} \vartheta d \vartheta \\
& =\frac{96}{27} \int_{0}^{2 \pi} \cos ^{2} \vartheta \sin ^{2} \vartheta\left(\cos ^{2} \vartheta+\sin ^{2} \vartheta\right) d \vartheta \\
& =\frac{96}{27} \int_{0}^{2 \pi} \cos ^{2} \vartheta \sin ^{2} \vartheta d \vartheta \\
& =\frac{96}{27} \int_{0}^{2 \pi}\left(\frac{1}{2} \sin 2 \vartheta\right)^{2} d \vartheta \\
& =\frac{8}{9} \int_{0}^{2 \pi} \sin ^{2} 2 \vartheta d \vartheta=\frac{8 \pi}{9}
\end{aligned}
$$

using the identity $\cos \vartheta \sin \vartheta=\frac{1}{2} \sin 2 \vartheta$ and the fact that

$$
\int_{0}^{2 \pi} \sin ^{2} 2 \vartheta d \vartheta=\int_{0}^{2 \pi} \cos ^{2} 2 \vartheta d \vartheta
$$

so $\int_{0}^{2 \pi} \sin ^{2} 2 \vartheta d \vartheta=\pi$.
2. Consider the function $\varphi(x)=x^{2} \cos (x / 2)$ defined on the interval $[0, \pi]$. Write down the even and odd extensions of $\varphi(x)$ to the interval $[-\pi, \pi]$. Which of these two extensions will have the more quickly converging Fourier series (if either)? Why? Compute the Fourier coefficients for the extension whose series converges more rapidly.

The function $\varphi(x)$ is an even function (on all of \mathbb{R}) so the even periodic extension of φ to $[-\pi, \pi]$ is given by φ itself:

$$
\varphi_{E}(x)=x^{2} \cos (x / 2):-\pi \leq x \leq \pi,
$$

and the odd extension of φ is

$$
\varphi_{O}(x)=\left\{\begin{aligned}
x^{2} \cos (x / 2) & : 0 \leq x \leq \pi \\
-x^{2} \cos (x / 2) & : \quad-\pi \leq x \leq 0
\end{aligned}\right.
$$

Figure 1: Graphs of $y=\varphi_{E}(x)$ and $y=\varphi_{O}(x)$
Both the even and the odd periodic extensions are continuous on the whole line, since

$$
\varphi(\pi)=\varphi(-\pi)=0
$$

Also, $\varphi^{\prime}(x)=2 x \cos (x / 2)-\frac{1}{2} x^{2} \sin (x / 2)$, so both functions are differentiable at all $x \neq n \pi$, and

$$
\varphi_{E}^{\prime}(0)=0=\varphi_{O}^{\prime}(0),
$$

which means that both φ_{E} and φ_{O} are differentiable at all even multiples of π. Finally at $\pm \pi$, we have

$$
\varphi_{E}(\pi)=-\frac{\pi^{2}}{2}=\varphi_{O}(\pi)
$$

but

$$
\varphi_{O}(-\pi)=-\frac{\pi^{2}}{2} \quad \text { while } \quad \varphi_{E}(-\pi)=\frac{\pi^{2}}{2}
$$

This means that φ_{O} is also differentiable at all odd multiples of π, while φ_{E} is not.
Since φ_{O} is differentiable on all of \mathbb{R} and φ_{E} is not, the Fourier series for φ_{O} should converge more rapidly than that of φ_{E}.
The Fourier series of the odd extension will include only $\sin k x$ terms whose coefficients are given by

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \varphi_{O}(x) \sin (k x) d x=\frac{2}{\pi} \int_{0}^{\pi} \varphi_{O}(x) \sin (k x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (x / 2) \sin (k x) d x
$$

since the integrand is even, being the product of two odd functions. To compute this integral, I'll simplify the (trigonometric factor of the) integrand using the identity

$$
\sin (\alpha) \cos (\beta)=\frac{1}{2}(\sin (\alpha+\beta)+\sin (\alpha-\beta))
$$

Setting $\alpha=k x$ and $\beta=x / 2$, it follows that

$$
\begin{aligned}
b_{k} & =\frac{1}{\pi} \int_{0}^{\pi} x^{2}\left(\sin \left(\left(k+\frac{1}{2}\right) x\right)+\sin \left(\left(k-\frac{1}{2}\right) x\right)\right) d x \\
& =\frac{1}{\pi}\left(\int_{0}^{\pi} x^{2} \sin \left(\left(k+\frac{1}{2}\right) x\right) d x+\int_{0}^{\pi} x^{2} \sin \left(\left(k-\frac{1}{2}\right) x\right) d x\right) \\
& =\frac{1}{\pi}\left(I_{1}(k)+I_{2}(k)\right)
\end{aligned}
$$

To compute $I_{1}(k)$ and $I_{2}(k)$, I'll use the formula

$$
\begin{aligned}
\int x^{2} \sin (\alpha x) d x & =-\frac{1}{\alpha} x^{2} \cos (\alpha x)+\frac{2}{\alpha} \int x \cos (\alpha x) d x \\
& =-\frac{1}{\alpha} x^{2} \cos (\alpha x)+\frac{2}{\alpha^{2}} x \sin (\alpha x)-\frac{2}{\alpha^{2}} \int \sin (\alpha x) d x \\
& =-\frac{1}{\alpha} x^{2} \cos (\alpha x)+\frac{2}{\alpha^{2}} x \sin (\alpha x)+\frac{2}{\alpha^{3}} \cos (\alpha x)+C
\end{aligned}
$$

Setting $\alpha=\frac{2 k+1}{2}$, it follows that

$$
\begin{aligned}
I_{1}(k) & =-\frac{2}{2 k+1} x^{2} \cos \left(\frac{2 k+1}{2} x\right)+\frac{8}{(2 k+1)^{2}} x \sin \left(\frac{2 k+1}{2} x\right)+\left.\frac{16}{(2 k+1)^{3}} \cos \left(\frac{2 k+1}{2} x\right)\right|_{0} ^{\pi} \\
& =\frac{(-1)^{k} 8 \pi}{(2 k+1)^{2}}-\frac{16}{(2 k+1)^{3}} .
\end{aligned}
$$

Likewise, setting $\alpha=\frac{2 k-1}{2}$, we have

$$
\begin{aligned}
I_{2}(k) & =-\frac{2}{2 k-1} x^{2} \cos \left(\frac{2 k-1}{2} x\right)+\frac{8}{(2 k-1)^{2}} x \sin \left(\frac{2 k-1}{2} x\right)+\left.\frac{16}{(2 k-1)^{3}} \cos \left(\frac{2 k-1}{2} x\right)\right|_{0} ^{\pi} \\
& =\frac{(-1)^{k-1} 8 \pi}{(2 k-1)^{2}}-\frac{16}{(2 k-1)^{3}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
b_{k} & =\frac{1}{\pi}\left(\frac{(-1)^{k} 8 \pi}{(2 k+1)^{2}}-\frac{16}{(2 k+1)^{3}}+\frac{(-1)^{k-1} 8 \pi}{(2 k-1)^{2}}-\frac{16}{(2 k-1)^{3}}\right) \\
& =\frac{(-1)^{k-1} 64 k}{(2 k-1)^{2}(2 k+1)^{2}}-\frac{16}{\pi}\left(\frac{1}{(2 k+1)^{3}}+\frac{1}{(2 k-1)^{3}}\right) \\
& =64 k\left(\frac{(-1)^{k-1}}{(2 k-1)^{2}(2 k+1)^{2}}-\frac{4 k^{2}+3}{(2 k+1)^{3}(2 k-1)^{3} \pi}\right)
\end{aligned}
$$

The first four coefficients are

$$
b_{1} \approx 1.8295, \quad b_{2} \approx-0.7983 \quad b_{3} \approx 0.1011 \text { and } b_{4} \approx-0.0863
$$

and the graphs of $\varphi_{O}(x)$ (solid black line) and its Fourier series, truncated at four terms (dashed red line) are displayed in Figure 2 below.
3. Find the Fourier transform of the function $f(x)=e^{-a|x|}$, where $a>0$. Use your answer (and the Fourier inversion formula) to compute

$$
\int_{0}^{\infty} \frac{\cos (\omega x)}{\omega^{2}+a^{2}} d \omega
$$

Figure 2: Graphs of $\varphi_{O}(x)$ and its Fourier series, truncated at four terms.

Fourier transform:

$$
\begin{aligned}
\hat{f}(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a|x|} e^{-i \omega x} d x \\
& =\frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0} e^{(a-i \omega) x} d x+\int_{0}^{\infty} e^{-(a+i \omega) x} d x\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\frac{1}{a-i \omega}-\frac{1}{-a-i \omega}\right] \\
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{2 a}{\omega^{2}+a^{2}}
\end{aligned}
$$

From the Fourier inversion formula, we have

$$
e^{-a|x|}=\frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{i \omega x}}{\omega^{2}+a^{2}} d \omega=\frac{a}{\pi}\left(\int_{-\infty}^{\infty} \frac{\cos (\omega x)}{\omega^{2}+a^{2}} d \omega+i \int_{-\infty}^{\infty} \frac{\sin (\omega x)}{\omega^{2}+a^{2}} d \omega\right)=\frac{a}{\pi} \int_{-\infty}^{\infty} \frac{\cos (\omega x)}{\omega^{2}+a^{2}} d \omega
$$

because the imaginary integral is 0 since the integrand there is odd. It follows that

$$
\int_{0}^{\infty} \frac{\cos (\omega x)}{\omega^{2}+a^{2}} d \omega=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos (\omega x)}{\omega^{2}+a^{2}} d \omega=\frac{\pi}{2 a} e^{-a|x|}
$$

4. Use the residue theorem (and appropriately chosen contours in \mathbb{C}) to compute the integrals

$$
I_{1}=\int_{0}^{\infty} \frac{d x}{x^{4}+5 x^{2}+4} \quad \text { and } \quad I_{2}=\int_{0}^{\infty} \frac{\cos 3 x d x}{x^{4}+5 x^{2}+4}
$$

The integrands of both integrals are even functions, so

$$
I_{1}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d x}{x^{4}+5 x^{2}+4} \quad \text { and } \quad I_{2}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos 3 x d x}{x^{4}+5 x^{2}+4}
$$

For both integrals, I'll use contours γ_{R}, that go from $-R$ to R on the real line, and then back again following the half-circle $\left\{R e^{i \vartheta}: 0 \leq \vartheta \leq \pi\right\}$, as depicted below.

First note that $z^{4}+5 z^{2}+4=\left(z^{2}+4\right)\left(z^{2}+1\right)$, so the poles of both integrands are $\pm 2 i$ and $\pm i$, and in the upper half plane, the only poles are at i and $2 i$.
Next, If $|z|=R>\sqrt{18}$, then

$$
\left|z^{4}+5 z^{2}+4\right| \geq R^{4}-5 R^{2}-4=R^{4}\left(1-\frac{5}{R^{2}}-\frac{4}{R^{4}}\right)>R^{4}\left(1-\frac{9}{R^{2}}\right)>\frac{R^{4}}{2}
$$

Hence, if $R>\sqrt{18} R$ and γ_{R}^{\prime} is the semicircular portion of γ_{R}, then

$$
\left|\int_{\gamma_{R}^{\prime}} \frac{d z}{z^{4}+5 z^{2}+4}\right|<\frac{2}{R^{4}} \cdot \pi R=\frac{2 \pi}{R^{3}}
$$

and therefore

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{R}^{\prime}} \frac{d z}{z^{4}+5 z^{2}+4}=0
$$

For I_{2}, we will also need the following observation: if $z=x+i y$ and $y>0$, then

$$
\left|e^{3 i z}\right|=\left|e^{-3 y} e^{3 i x}\right|=e^{-3 y}<1
$$

and therefore $\lim _{R \rightarrow \infty} \int_{\gamma_{R}^{\prime}} \frac{e^{3 i z} d z}{z^{4}+5 z^{2}+4}=0$ as well.
To compute I_{1}, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+5 x^{2}+4} & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d x}{x^{4}+5 x^{2}+4} \\
& =\lim _{R \rightarrow \infty} \oint_{\gamma_{R}} \frac{d z}{(z-i)(z+i)(z-2 i)(z+2 i)}=2 \pi i(\operatorname{Res}(i)+\operatorname{Res}(2 i))
\end{aligned}
$$

Since both poles are simple in this case, we have

$$
\operatorname{Res}(i)=\lim _{z \rightarrow i}\left((z-i) \cdot \frac{1}{(z-i)(z+i)(z-2 i)(z+2 i)}\right)=\frac{1}{(2 i)(-i)(3 i)}=-\frac{i}{6}
$$

and

$$
\operatorname{Res}(2 i)=\lim _{z \rightarrow 2 i}\left((z-2 i) \cdot \frac{1}{(z-i)(z+i)(z-2 i)(z+2 i)}\right)=\frac{1}{(i)(3 i)(4 i)}=\frac{i}{12}
$$

so

$$
I_{1}=\pi i\left(-\frac{i}{6}+\frac{i}{12}\right)=\frac{\pi}{12} .
$$

For I_{2}, note that

$$
\int_{-\infty}^{\infty} \frac{e^{3 i x} d x}{x^{4}+5 x^{2}+4}=\int_{-\infty}^{\infty} \frac{\cos (3 x) d x}{x^{4}+5 x^{2}+4}+i \int_{-\infty}^{\infty} \frac{\sin (3 x) d x}{x^{4}+5 x^{2}+4}=\int_{-\infty}^{\infty} \frac{\cos (3 x) d x}{x^{4}+5 x^{2}+4}
$$

since the integrand of the imaginary integral is odd, so that integral is 0 . Therefore

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\cos (3 x) d x}{x^{4}+5 x^{2}+4} & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{3 i x} d x}{x^{4}+5 x^{2}+4} \\
& =\lim _{R \rightarrow \infty} \oint_{\gamma_{R}} \frac{e^{3 i z} d z}{(z-i)(z+i)(z-2 i)(z+2 i)}=2 \pi i(\operatorname{Res}(i)+\operatorname{Res}(2 i))
\end{aligned}
$$

In this case, we have

$$
\operatorname{Res}(i)=-\frac{i}{6} e^{-3} \quad \text { and } \quad \operatorname{Res}(2 i)=\frac{i}{12} e^{-6}
$$

so

$$
I_{2}=\pi i\left(-\frac{i}{6} e^{-3}+\frac{i}{12} e^{-6}\right)=\frac{\pi}{12}\left(2 e^{-3}-e^{-6}\right) .
$$

5. Use Rouché's theorem to show that the zeros of the polynomial $P(z)=5 z^{5}+z^{2}+z+2$ all lie in the annulus

$$
A=\left\{z \in \mathbb{C}: \frac{13}{20}<|z|<1\right\}
$$

Brownie points for finding a narrower annulus (without using software to estimate the zeros!).
If $|z|=1$, then $\left|5 z^{5}\right|=5$ and

$$
\left|z^{2}+z+2\right| \leq\left|z^{2}\right|+|z|+2=4
$$

so $\left|5 z^{5}\right|>\left|z^{2}+z+2\right|$ on the unit circle $\{z:|z|=1\}$. Hence, by Rouché's theorem, $F(z)=z^{5}$ and $P(z)=F(z)+z^{2}+z+2$ have the same number of zeros in the unit disk, namely 5 . If $|z|=13 / 20$, then

$$
\left|5 z^{5}+z^{2}+z\right| \leq 5 \cdot \frac{13^{5}}{20^{5}}+\frac{13^{2}}{20^{2}}+\frac{13}{20}=\frac{5288465}{3200000}<2
$$

and once again, by Rouché's theorem, $G(z)=2$ and $P(z)=G(z)+5 z^{5}+z^{2}+z$ have the same number of zeros (namely none) inside the disk $\{z:|z| \leq 13 / 20\}$.
Conclusion: all the zeros of $P(z)$ are contained in A, as claimed.

