
UCSC AMS 211 FALL 2015

Take Home Assignment 2

1. Find the area of the region bounded by the curve x2/3 + 9y2/3 = 4.

Hint: Use a parametrization of form x = α cosn ϑ and y = β sinn ϑ for the curve.

From Green’s theorem (see section 11.3) it follows that the area of the region bounded by a
simple closed curve γ in the plane is given by the integral

1

2

˛
γ

x dy − y dx.

The given curve can be parametrized by x = 8 cos3 ϑ and y =
8

27
sin3 ϑ (with 0 ≤ ϑ ≤ 2π), so

dx = −24 cos2 ϑ sinϑ dϑ and dy =
24

27
sin2 ϑ cosϑ dϑ. Hence the area of the specified region is

given by

A =
1

2

˛
γ

x dy − y dx =
96

27

ˆ 2π

0

cos4 ϑ sin2 ϑ+ cos2 ϑ sin4 ϑ dϑ

=
96

27

ˆ 2π

0

cos2 ϑ sin2 ϑ(cos2 ϑ+ sin2 ϑ) dϑ

=
96

27

ˆ 2π

0

cos2 ϑ sin2 ϑ dϑ

=
96

27

ˆ 2π

0

(
1

2
sin 2ϑ

)2

dϑ

=
8

9

ˆ 2π

0

sin2 2ϑ dϑ =
8π

9
,

using the identity cosϑ sinϑ = 1
2

sin 2ϑ and the fact that

ˆ 2π

0

sin2 2ϑ dϑ =

ˆ 2π

0

cos2 2ϑ dϑ,

so
´ 2π
0

sin2 2ϑ dϑ = π.

2. Consider the function ϕ(x) = x2 cos(x/2) defined on the interval [0, π]. Write down the even
and odd extensions of ϕ(x) to the interval [−π, π]. Which of these two extensions will have the
more quickly converging Fourier series (if either)? Why? Compute the Fourier coefficients for
the extension whose series converges more rapidly.

The function ϕ(x) is an even function (on all of R) so the even periodic extension of ϕ to [−π, π]
is given by ϕ itself:

ϕE(x) = x2 cos(x/2) : −π ≤ x ≤ π,

and the odd extension of ϕ is

ϕO(x) =

{
x2 cos(x/2) : 0 ≤ x ≤ π
−x2 cos(x/2) : −π ≤ x ≤ 0
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Figure 1: Graphs of y = ϕE(x) and y = ϕO(x)

Both the even and the odd periodic extensions are continuous on the whole line, since

ϕ(π) = ϕ(−π) = 0.

Also, ϕ′(x) = 2x cos(x/2)− 1
2
x2 sin(x/2), so both functions are differentiable at all x 6= nπ, and

ϕ′E(0) = 0 = ϕ′O(0),

which means that both ϕE and ϕO are differentiable at all even multiples of π. Finally at ±π,
we have

ϕE(π) = −π
2

2
= ϕO(π),

but

ϕO(−π) = −π
2

2
while ϕE(−π) =

π2

2
.

This means that ϕO is also differentiable at all odd multiples of π, while ϕE is not.

Since ϕO is differentiable on all of R and ϕE is not, the Fourier series for ϕO should converge
more rapidly than that of ϕE.

The Fourier series of the odd extension will include only sin kx terms whose coefficients are given
by

bk =
1

π

ˆ π

−π
ϕO(x) sin(kx) dx =

2

π

ˆ π

0

ϕO(x) sin(kx) dx =
2

π

ˆ π

0

x2 cos(x/2) sin(kx) dx,

since the integrand is even, being the product of two odd functions. To compute this integral,
I’ll simplify the (trigonometric factor of the) integrand using the identity

sin(α) cos(β) =
1

2

(
sin(α + β) + sin(α− β)

)
.

Setting α = kx and β = x/2, it follows that

bk =
1

π

ˆ π

0

x2
(
sin

((
k + 1

2

)
x
)

+ sin
((
k − 1

2

)
x
))
dx

=
1

π

(ˆ π

0

x2 sin
((
k + 1

2

)
x
)
dx+

ˆ π

0

x2 sin
((
k − 1

2

)
x
)
dx

)
=

1

π

(
I1(k) + I2(k)

)
2



To compute I1(k) and I2(k), I’ll use the formula

ˆ
x2 sin(αx) dx = − 1

α
x2 cos(αx) +

2

α

ˆ
x cos(αx) dx

= − 1

α
x2 cos(αx) +

2

α2
x sin(αx)− 2

α2

ˆ
sin(αx) dx

= − 1

α
x2 cos(αx) +

2

α2
x sin(αx) +

2

α3
cos(αx) + C

Setting α =
2k + 1

2
, it follows that

I1(k) = − 2

2k + 1
x2 cos

(
2k+1
2
x
)

+
8

(2k + 1)2
x sin

(
2k+1
2
x
)

+
16

(2k + 1)3
cos

(
2k+1
2
x
)∣∣∣∣π

0

=
(−1)k8π

(2k + 1)2
− 16

(2k + 1)3
.

Likewise, setting α =
2k − 1

2
, we have

I2(k) = − 2

2k − 1
x2 cos

(
2k−1
2
x
)

+
8

(2k − 1)2
x sin

(
2k−1
2
x
)

+
16

(2k − 1)3
cos

(
2k−1
2
x
)∣∣∣∣π

0

=
(−1)k−18π

(2k − 1)2
− 16

(2k − 1)3
.

It follows that

bk =
1

π

(
(−1)k8π

(2k + 1)2
− 16

(2k + 1)3
+

(−1)k−18π

(2k − 1)2
− 16

(2k − 1)3

)
=

(−1)k−164k

(2k − 1)2(2k + 1)2
− 16

π

(
1

(2k + 1)3
+

1

(2k − 1)3

)
= 64k

(
(−1)k−1

(2k − 1)2(2k + 1)2
− 4k2 + 3

(2k + 1)3(2k − 1)3π

)
The first four coefficients are

b1 ≈ 1.8295, b2 ≈ −0.7983 b3 ≈ 0.1011 and b4 ≈ −0.0863,

and the graphs of ϕO(x) (solid black line) and its Fourier series, truncated at four terms (dashed
red line) are displayed in Figure 2 below.

3. Find the Fourier transform of the function f(x) = e−a|x|, where a > 0. Use your answer (and
the Fourier inversion formula) to compute

ˆ ∞
0

cos(ωx)

ω2 + a2
dω.
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Figure 2: Graphs of ϕO(x) and its Fourier series, truncated at four terms.

Fourier transform:

f̂(ω) =
1√
2π

ˆ ∞
−∞

e−a|x|e−iωx dx

=
1√
2π

[ˆ 0

−∞
e(a−iω)x dx+

ˆ ∞
0

e−(a+iω)x dx

]
=

1√
2π

[
1

a− iω
− 1

−a− iω

]
=

1√
2π
· 2a

ω2 + a2

From the Fourier inversion formula, we have

e−a|x| =
a

π

ˆ ∞
−∞

eiωx

ω2 + a2
dω =

a

π

(ˆ ∞
−∞

cos(ωx)

ω2 + a2
dω + i

ˆ ∞
−∞

sin(ωx)

ω2 + a2
dω

)
=
a

π

ˆ ∞
−∞

cos(ωx)

ω2 + a2
dω,

because the imaginary integral is 0 since the integrand there is odd. It follows that

ˆ ∞
0

cos(ωx)

ω2 + a2
dω =

1

2

ˆ ∞
−∞

cos(ωx)

ω2 + a2
dω =

π

2a
e−a|x|.

4. Use the residue theorem (and appropriately chosen contours in C) to compute the integrals

I1 =

ˆ ∞
0

dx

x4 + 5x2 + 4
and I2 =

ˆ ∞
0

cos 3x dx

x4 + 5x2 + 4
.

The integrands of both integrals are even functions, so

I1 =
1

2

ˆ ∞
−∞

dx

x4 + 5x2 + 4
and I2 =

1

2

ˆ ∞
−∞

cos 3x dx

x4 + 5x2 + 4
.

For both integrals, I’ll use contours γR, that go from −R to R on the real line, and then back
again following the half-circle {Reiϑ : 0 ≤ ϑ ≤ π}, as depicted below.
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R-R

First note that z4 + 5z2 + 4 = (z2 + 4)(z2 + 1), so the poles of both integrands are ±2i and ±i,
and in the upper half plane, the only poles are at i and 2i.

Next, If |z| = R >
√

18, then

|z4 + 5z2 + 4| ≥ R4 − 5R2 − 4 = R4

(
1− 5

R2
− 4

R4

)
> R4

(
1− 9

R2

)
>
R4

2
.

Hence, if R >
√

18R and γ′R is the semicircular portion of γR, then∣∣∣∣∣
ˆ
γ′R

dz

z4 + 5z2 + 4

∣∣∣∣∣ < 2

R4
· πR =

2π

R3

and therefore

lim
R→∞

ˆ
γ′R

dz

z4 + 5z2 + 4
= 0.

For I2, we will also need the following observation: if z = x+ iy and y > 0, then

|e3iz| = |e−3ye3ix| = e−3y < 1,

and therefore lim
R→∞

ˆ
γ′R

e3iz dz

z4 + 5z2 + 4
= 0 as well.

To compute I1, we have

ˆ ∞
−∞

dx

x4 + 5x2 + 4
= lim

R→∞

ˆ R

−R

dx

x4 + 5x2 + 4

= lim
R→∞

˛
γR

dz

(z − i)(z + i)(z − 2i)(z + 2i)
= 2πi(Res(i) + Res(2i)).

Since both poles are simple in this case, we have

Res(i) = lim
z→i

(
(z − i) · 1

(z − i)(z + i)(z − 2i)(z + 2i)

)
=

1

(2i)(−i)(3i)
= − i

6

and

Res(2i) = lim
z→2i

(
(z − 2i) · 1

(z − i)(z + i)(z − 2i)(z + 2i)

)
=

1

(i)(3i)(4i)
=

i

12
,

so

I1 = πi

(
− i

6
+

i

12

)
=

π

12
.
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For I2, note that

ˆ ∞
−∞

e3ix dx

x4 + 5x2 + 4
=

ˆ ∞
−∞

cos(3x) dx

x4 + 5x2 + 4
+ i

ˆ ∞
−∞

sin(3x) dx

x4 + 5x2 + 4
=

ˆ ∞
−∞

cos(3x) dx

x4 + 5x2 + 4
,

since the integrand of the imaginary integral is odd, so that integral is 0. Therefore

ˆ ∞
−∞

cos(3x) dx

x4 + 5x2 + 4
= lim

R→∞

ˆ R

−R

e3ix dx

x4 + 5x2 + 4

= lim
R→∞

˛
γR

e3iz dz

(z − i)(z + i)(z − 2i)(z + 2i)
= 2πi(Res(i) + Res(2i)).

In this case, we have

Res(i) = − i
6
e−3 and Res(2i) =

i

12
e−6,

so

I2 = πi

(
− i

6
e−3 +

i

12
e−6

)
=

π

12

(
2e−3 − e−6

)
.

5. Use Rouché’s theorem to show that the zeros of the polynomial P (z) = 5z5 + z2 + z + 2 all lie
in the annulus

A =

{
z ∈ C :

13

20
< |z| < 1

}
.

Brownie points for finding a narrower annulus (without using software to estimate the zeros!).

If |z| = 1, then |5z5| = 5 and ∣∣z2 + z + 2
∣∣ ≤ ∣∣z2∣∣ + |z|+ 2 = 4,

so |5z5| > |z2 + z + 2| on the unit circle {z : |z| = 1}. Hence, by Rouché’s theorem, F (z) = z5

and P (z) = F (z) + z2 + z + 2 have the same number of zeros in the unit disk, namely 5.

If |z| = 13/20, then

∣∣5z5 + z2 + z
∣∣ ≤ 5 · 135

205
+

132

202
+

13

20
=

5288465

3200000
< 2,

and once again, by Rouché’s theorem, G(z) = 2 and P (z) = G(z) + 5z5 + z2 + z have the same
number of zeros (namely none) inside the disk {z : |z| ≤ 13/20}.
Conclusion: all the zeros of P (z) are contained in A, as claimed.
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