
UCSC AMS 211 FALL 2015

Review Questions for Final Exam – Solutions

1. (a) From first principles, find an integrating factor µ(x) for the general first order linear differ-
ential equation

dy

dx
+ p(x)y = q(x).

Solution.

We want to find µ(x) such that

µ(x)(y′ + p(x)y) =
d

dx
(µ(x)y).

This holds if and only if
dµ

dx
= p(x)µ(x), which in turn implies that

1

µ(x)

dµ(x)

dx
= p(x)

and integrating both sides leads to

ln(µ(x)) =

ˆ
p(x) dx,

so µ(x) = exp(
´
p(x) dx).

(b) Solve the initial value problems

i. sinx
dy

dx
− 2 cosx y = sin3x; y(π/4) = 0.

Solution. First divide through by sinx:

dy

dx
− 2

cosx

sinx
y = sin2x. (1)

Now, find the integrating factor:

µ(x) = exp

(
−2

ˆ
cosx

sinx
dx

)
= exp(−2 ln(sinx)) = sin−2x.

Next, multiply equation (1) through by sin−2 x:

sin−2x

(
dy

dx
− 2

cosx

sinx
y

)
=

d

dx

(
y sin−2x

)
= 1.

Integrate and solve for y:

y sin−2 x = x+ C =⇒ y = (x+ C) sin2x.

Finally, use the boundary condition to solve for C:

0 = y(π/4) = (π/4 + C) sin2(π/4) =
π

4
+ C =⇒ C = −π

4
,

so
y = (x− π/4) sin2x.
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ii.
dy

dx
+ 2xy = 3xy3; y(0) = 1. (This one needs a substitution to make it linear.)

Solution. As alluded to, this is a Bernoulli equation, and the substitution u = y−2, which

implies that
dy

dx
= −1

2
y3du

dx
, transforms the original equation to

du

dx
− 4xu = −6x, (2)

after multiplication by −2y−3. The integrating factor for (2) is

µ(x) = exp

(
−4

ˆ
x dx

)
= e−2x2 ,

and multiplying (2) through by this factor gives

e−2x2
(
du

dx
− 4xu

)
=

d

dx

(
ue−2x2

)
= −6xe−2x2 .

Integrating both sides and solving for u, we have

ue−2x2 =
6

4

ˆ
−4xe−2x2 dx =

3

2
e−2x2 + C =⇒ u =

3

2
+ Ce2x2 .

The boundary condition y(0) = 1 implies that u(0) = 1−2 = 1, and using this to solve for C,
we have

1 =
3

2
+ C =⇒ C = −1

2
,

so u = 1
2
(3− e2x2), and

y = u−1/2 =

√
2

3− e2x2
.

Comment: The last equation can be rewritten as y′ = x(2 − 3y3) and the function on the
right is continuously differentiable with respect to both variables in the entire xy-plane (which
is an infinite rectangle centered at (0, 1)). Nonetheless, the solution we found is only defined

in the interval
(
−
√

ln 3
2
,
√

ln 3
2

)
≈ (−0.741, 0.741) around 0.

2. (a) Use the definition to find the Laplace transforms of h(x) = H(x − 2) − H(x − 4), where
H(x) is the Heaviside function

H(x) =

{
1 : x ≥ 0
0 : x < 0

Solution.

L(h(x)) =

ˆ ∞
0

(H(x− 2)−H(x− 4))e−xs dx =

ˆ 4

2

e−xs dx = −1

s
e−xs

∣∣∣∣4
2

=
e−2s − e−4s

s
.

(b) Use the Laplace transform method to solve the initial value problem

y′′ + 2y′ − 3y = H(x)−H(x− 1); y(0) = 1, y′(0) = 0.
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Solution. The idea is to apply the Laplace transform to both sides of the differential equa-
tion. This incorporates the boundary conditions because:

L(y′) = sY (s)− y(0) and L(y′′) = s2Y (s)− y(0)s− y′(0),

where Y (s) = L(y). We then solve the resulting algebraic equation for Y (s) and use the
inverse Laplace transform to find y.†

In this case, we have

L(y′′ + 2y′ − 3y) = L(H(x)−H(x− 1)) =⇒ s2Y (s)− s+ 2sY (s)− 2− 3Y (s) =
1

s
− e−s

s

=⇒ Y (s)(s2 + 2s− 3) =
1− e−s

s
+ s+ 2

Therefore,

Y (s) =
s2 + 2s+ 1

s(s− 1)(s+ 3)
− e−s 1

s(s− 1)(s+ 3)

= −1/3

s
+

1

s− 1
+

1/3

s+ 3
− 1/3e−s

s
+

1/4e−s

s− 1
+

1/12e−s

s+ 3

From section 13.2.2 in the book, we learn that

L−1
(
e−bsF (s)

)
=

{
0 : 0 < x ≤ b

f(x− b) : x > b
= f(x− b)H(x− b)

where f(x) = L−1(F (s)). This means that

y = L−1

(
−1/3

s
+

1

s− 1
+

1/3

s+ 3
− 1/3e−s

s
+

1/4e−s

s− 1
+

1/12e−s

s+ 3

)
= −1

3
+ ex +

1

3
e−3x − 1

3
H(x− 1) +

1

4
ex−1H(x− 1) +

1

12
e−3(x−1)H(x− 1)

3. Solve the initial value problem

d2y

dt2
+ 2

dy

dt
+ 5y = 3 cos(2t); y(0) = y′(0) = 0. (3)

Solution. Two methods...

(i) Undetermined coefficients: First find the general solution of the complementary (homo-
geneous) equation

d2y

dt2
+ 2

dy

dt
+ 5y = 0 (4)

Characteristic equation — r2 + 2r+ 5 = 0 =⇒ r =
−2±

√
4− 20

2
=⇒ r = −1± 2i, so a basis

for the space of solutions of equation (4) is given by

u1(t) = e(−1+2i)t and u2(t) = e(−1−2i)t,

†In the most common cases, we can ‘read’ the inverse transform from a table.
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Figure 1: Graph of the solution of y′′ + 2y′ − 3y = H(x)−H(x− 1); y(0) = 1, y′(0) = 0.

and a basis of real-valued solutions is given by

y1 =
1

2
(u1 + u2) = e−t cos 2t and y2 =

1

2i
(u1 − u2) = e−t sin 2t.

Thus, the general solution of equation (4) is

yh = c1y1 + c2y2 = e−t(c1 cos 2t+ c2 sin 2t).

Next, find a particular solution of the differential equation (3) using the method of undeter-
mined coefficients, i.e., look for a solution of the form yp = A cos 2t + B sin 2t. We have
y′p = −2A sin 2t + 2B cos 2t and y′′p = −4A cos 2t − 4B sin 2t, and substituting these into the
original equation gives

y′′p + 2y′p + 5yp = cos 2t(−4A+ 4B + 5A) + sin 2t(−4B − 4A+ 5B) = 3 cos 2t,

and leads to the pair of linear equations

A+ 4B = 3

−4A+B = 0

with solution

A =

∣∣∣∣ 3 4
0 1

∣∣∣∣∣∣∣∣ 1 4
−4 1

∣∣∣∣ =
3

17
and B =

∣∣∣∣ 1 3
−4 0

∣∣∣∣∣∣∣∣ 1 4
−4 1

∣∣∣∣ =
12

17

It follows that the general solution of (3) is

y = yp + yh =
3

17
cos 2t+

12

17
sin 2t+ e−t(c1 cos 2t+ c2 sin 2t).
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Finally, we use the initial conditions, y(0) = y′(0) = 0 to determine c1 and c2. First, we have

0 = yp(0) =
3

17
+ c1 =⇒ c1 = − 3

17
.

Second, y′p = − 6
17

sin 2t+ 24
17

cos 2t+ e−t ((2c2 − c1) cos 2t− (2c1 + c2) sin 2t) , so

0 = y′p(0) =
24

17
+ 2c2 − c1 = 2c2 +

27

17
=⇒ c2 = −27

34
,

and the solution to the initial value problem is

y =
3

17
cos 2t+

12

17
sin 2t− 1

34
e−t(6 cos 2t+ 27 sin 2t).

(ii) Laplace transform: First take Laplace transforms of both sides of equation (3), using the
given boundary conditions

L
(
d2y

dt2
+ 2

dy

dt
+ 5y

)
= L(3 cos(2t)) =⇒ s2Y (s) + 2sY (s) + 5Y (s) =

3s

s2 + 4
,

where Y (s) is the Laplace transform of the (as-of-yet unknown) solution y. Next, solve the
equation above for Y (s):

Y (s)(s2 + 2s+ 5) =
3s

s2 + 4
=⇒ Y (s) =

3s

(s2 + 4)(s2 + 2s+ 5)
.

Now use a partial fraction decomposition of the rational function on the right in order to more
easily identify the inverse Laplace transform. Note that both quadratic factors in the denominator
cannot be factored over the real numbers, and this leads to a partial fraction decomposition of
the form

3s

(s2 + 4)(s2 + 2s+ 5)
=
As+B

s2 + 4
+

Cs+D

s2 + 2s+ 5

=
(As+B)(s2 + 2s+ 5) + (Cs+D)(s2 + 4)

(s2 + 4)(s2 + 2s+ 5)

=
(A+ C)s3 + (2A+B +D)s2 + (5A+ 2B + 4C)s+ (5B + 4D)

(s2 + 4)(s2 + 2s+ 5)
.

Comparing the coefficients of s3, s2, s and the constant coefficient on both sides of the equation
above, yields a system of four linear equations in the unknown coefficients A,B,C and D:

A+ C = 0

2A+B +D = 0

5A+ 2B + 4C = 3

5B + 4D = 0

The first and fourth equation show that C = −A and D = −5
4
B, and substituting these expres-

sions in the second and third equation gives the pair of equations

2A− 1

4
B = 0

A+ 2B = 3
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with solution

A =

∣∣∣∣ 0 −1/4
3 2

∣∣∣∣∣∣∣∣ 2 −1/4
1 2

∣∣∣∣ =
3/4

17/4
=

3

17
and B =

∣∣∣∣ 2 0
1 3

∣∣∣∣∣∣∣∣ 2 −1/4
1 2

∣∣∣∣ =
6

17/4
=

24

17
.

It follows that C = − 3
17

and D = −30
17

, and therefore

Y (s) =
3s

(s2 + 4)(s2 + 2s+ 5)

=
3
17
s+ 24

17

s2 + 4
−

3
17
s+ 30

17

s2 + 2s+ 5

=
3

17
· s

s2 + 4
+

12

17
· 2

s2 + 4
− 3

17
· s+ 1

(s+ 1)2 + 4
− 27

34
· 2

(s+ 1)2 + 4
.

Note that the coefficients of the rational functions in the second row have been distributed so that
the rational functions in the third row all have the form

s+ a

(s+ a)2 + b2
or

b

(s+ a)2 + b2
,

whose inverse Laplace transforms are

e−at cos(bt) and e−at sin(bt)

respectively. It follows that the solution is

y(t) = L−1(Y (s)) = L−1

(
3

17
· s

s2 + 4
+

12

17
· 2

s2 + 4
− 3

17
· s+ 1

(s+ 1)2 + 4
− 27

34
· 2

(s+ 1)2 + 4

)
which is (not surprisingly) the same solution we found the first time around.

Conclusion: The algebra is unavoidable, so pick your poison.

4. Use Green’s theorem to evaluate the integral

˛
C

x2y dx+ 2xy2 dy,

where C is the triangle in R2 with corners (0, 0), (0, 2) and (1, 4).

Solution. Setting P = x2y and Q = 2xy2, we have Py = x2 and Qx = 2y2. Invoking Green’s
theorem, we have ˛

C

x2y dx+ 2xy2 dy =

ˆ
T

2y2 − x2 dx dy,

where T is the triangular region bounded by C:

T = {(x, y) : 0 ≤ x ≤ 1 and 4x ≤ y ≤ 2x+ 2}.
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It follows that
˛
C

x2y dx+ 2xy2 dy =

ˆ 1

0

ˆ 2x+2

4x

2y2 − x2 dy dx

=

ˆ 1

0

2

3

(
(2x+ 2)3 − (4x)3

)
− x2(2x+ 2− 4x) dx

=
2

3

ˆ 1

0

−53x3 + 21x2 + 24x+ 8 dx

=
2

3

(
−53

4
+ 7 + 12 + 8

)
=

55

6

5. Compute the surface integral

ˆ
S

x2 + 2y2 dS over the surface

S = {(x, y, z) : x2 + y2 = z2 and 0 ≤ z ≤ 1}.

Suggestion: Use the parametrization r = ρ cos θi + ρ sin θj + ρk for the cone, with 0 ≤ ρ ≤ 1 and
0 ≤ θ < 2π.

Solution: With the suggested parametrization we have

rρ = cos θi + sin θj + k and rθ = −ρ sin θi + ρ cos θj,

from which it follows that

dS = ‖rρ × rθ‖ dA = ‖ − ρ cos θi− ρ sin θj + ρk‖ dA =
√

2ρ dρ dθ.

Therefore,
ˆ
S

x2 + 2y2 dS =

ˆ 2π

0

ˆ 1

0

(
ρ2 cos2 θ + 2ρ2 sin2 θ

)√
2ρ dρ dθ

=
√

2

ˆ 2π

0

(1 + sin2 θ)

ˆ 1

0

ρ3 dρ dθ

=

√
2

4

ˆ 2π

0

1 + sin2 θ dθ =
3
√

2π

4

6. If ϕ(x, y, z) is a scalar field and v(x, y, z) is a vector field, show that

∇× (∇ϕ) = 0 and ∇ · (∇× v) = 0.

Solution: For the scalar field ϕ, we have

∇ · ϕ =
∂ϕ

∂x
i +

∂ϕ

∂y
j +

∂ϕ

∂z
k,

so, assuming that all the second order derivatives are continuous, so that ϕxy = ϕyx, ϕxz = ϕzx
and ϕyz = ϕzy, it follows that

∇× (∇ · ϕ) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
ϕx ϕy ϕz

∣∣∣∣∣∣ = (ϕzy − ϕyz)i + (ϕxz − ϕzx)j + (ϕyx − ϕxy)k = 0.
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For the vector field v = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k, we have

∇× v =

(
∂v3

∂y
− ∂v2

∂z

)
i +

(
∂v1

∂z
− ∂v3

∂x

)
j +

(
∂v2

∂x
− ∂v1

∂y

)
k.

Therefore (once again assuming that all second order partial derivatives are continuous)

∇ · (∇× v) =
∂2v3

∂x∂y
− ∂2v2

∂x∂z
+
∂2v1

∂y∂z
− ∂2v3

∂y∂x
+
∂2v2

∂z∂x
− ∂2v1

∂z∂y
= 0.

7. Suppose that u = (φ(x, y), ψ(x, y), 0) is a continuous vector field confined to R2 that is both
solenoidal and irrotational. Show that the functions φ and ψ are both harmonic (potential)
functions (i.e., they are each solutions of Laplace’s equation).

Solution. If u is solenoidal, then its divergence is 0, i.e.,

∇ · u =
∂φ

∂x
+
∂ψ

∂y
= 0,

so ψy = −φx. If u is irrotational, then its curl is 0, i.e.,

∇× u =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

φ ψ 0

∣∣∣∣∣∣ =

(
∂ψ

∂x
− ∂φ

∂y

)
k = 0,

so ψx = φy. It follows that the function f(x + iy) = ψ(x, y) + iφ(x, y) satisfies the Cauchy-
Riemann equations and is therefore analytic in C.

8. A (left) stochastic matrix A is an n× n matrix,

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 ,
with nonnegative coefficients whose column-sums are all 1, i.e., for which

n∑
i=1

aij = 1 for each j.

(a) Show that a stochastic matrix always has an eigenvalue equal to 1.

Proof 1. If I is the n× n identity matrix, then the column-sums of A− I are all 0, because
the sum of the entries in the jth column of A− I is

a1j + a2j + · · ·+ (ajj − 1) + · · ·+ anj = (a1j + · · ·+ anj)− 1 = 0.

It follows that the sum of the rows of A− I is the zero (row) vector, i.e., the rows of A− I
are linearly dependent, so rank(A− I) ≤ n−1. This implies that det(A− I) = 0, so λ = 1
is an eigenvalue of A.

Proof 2: If x = [1 1 · · · 1]T , then

ATx =


a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann




1
1
...
1

 =


a11 + a21 + · · ·+ an1

a12 + a22 + · · ·+ an2
...

a1n + a2n + · · ·+ ann

 =


1
1
...
1

 ,
i.e., ATx = x, which means that x is an eigenvector of AT with eigenvalue λ = 1. But the
eigenvalues of A and AT are the same, so λ = 1 is an eigenvalue of A too.
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(b) Find the eigenvalues and corresponding eigenvectors of the stochastic matrix

A =

[
0.7 0.8
0.3 0.2

]
.

Solution. Eigenvalues:

det (A− λI) =

∣∣∣∣ 0.7− λ 0.8
0.3 0.2− λ

∣∣∣∣ = λ2 − 0.9λ− 0.1 = (λ− 1)(λ+ 0.1),

so the eigenvalues of A are λ1 = 1 and λ2 = −0.1.

Eigenvectors: we solve the equations (A− I)x = 0 and (A + 0.1I)x = 0.

λ1 = 1 :

[
−0.3 0.8

0.3 −0.8

] [
x
y

]
=

[
0
0

]
=⇒ −0.3x+ 0.8y = 0 =⇒ y =

3

8
x,

so x1 =

[
8
3

]
is an eigenvector with eigenvalue λ1 = 1.

λ2 = −0.1 :

[
0.8 0.8
0.3 0.3

] [
x
y

]
=

[
0
0

]
=⇒ x+ y = 0 =⇒ y = −x,

so x2 =

[
1
−1

]
is an eigenvector with eigenvalue λ2 = −0.1.

(c) Show that if u =

[
a
b

]
, then there is a vector w that depends only on a + b such that

Anu→ w.

Solution. The eigenvectors of A are linearly independent, so for any u, we have

u =

[
a
b

]
= c1

[
8
3

]
+ c2

[
1
−1

]
.

From this it follows that

Anu = c1A
n

[
8
3

]
+ c2A

n

[
1
−1

]
= c1

[
8
3

]
+ c2(−0.1)n

[
1
−1

]
→ c1

[
8
3

]
,

where

c1 =

∣∣∣∣ a 1
b −1

∣∣∣∣∣∣∣∣ 8 1
3 −1

∣∣∣∣ =
a+ b

11
.

In other words,

Anu −→ (a+ b)

[
8/11
3/11

]
.

9. In a large forest, foxes prey on rabbits while the rabbits feed on the (unlimited) vegetation. The
change over time of the fox and rabbit populations in this forest is modeled by the following
linear system: [

Fk+1

Rk+1

]
=

[
0.5 0.3
−p 1.2

]
·
[
Fk
Rk

]
,
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where Fk is the size of the fox population in year k, Rk is the size of the rabbit population in
year k and p is a positive number called the predation parameter, that accounts for deaths in
the rabbit population due to predation by foxes. The matrix, Tp, on the right hand side of the
equation is called the transition matrix of the model.

(i) Find the eigenvalues and corresponding eigenvectors for the transition matrix when the
predation parameter is p = 0.275.

When p = 0.275, the transition matrix is Tp =

[
0.5 0.3
−0.275 1.2

]
and the characteristic

equation of Tp is∣∣∣∣ 0.5− λ 0.3
−0.275 1.2− λ

∣∣∣∣ = 0 =⇒ λ2 − 1.7λ+ 0.6825 = 0,

whose roots are

λ1 =
1.7 +

√
1.72 − 4 · 0.6825

2
= 1.05 and λ2 =

1.7−
√

1.72 − 4 · 0.6825

2
= 0.65.

Next, we find eigenvectors by finding (nonzero) solutions to the systems (T − λ1I)x = 0
and (T − λ2I)x = 0.

For λ1 = 1.05, we have the system[
−0.55 0.3
−0.275 0.15

] [
x
y

]
=

[
0
0

]
.

This reduces to the single equation −0.55x + 0.3y = 0, of which x = 6 and y = 11 is a
solution, so

v1 =

[
6
11

]
is an eigenvector for λ1.

For λ2 = 0.65, we have the system[
−0.15 0.3
−0.275 0.55

] [
x
y

]
=

[
0
0

]
.

This reduces to the single equation −0.15x + 0.3y = 0, of which x = 2 and y = 1 is a
solution, so

v2 =

[
2
1

]
is an eigenvector for λ2.

(ii) If F0 = 4, R0 = 20 and p = 0.275, what can you say about the limit lim
k→∞

Rk

Fk
?

First, we express x0 =

[
4
20

]
as a linear combination of v1 =

[
6
11

]
and v2 =

[
2
1

]
:

[
4
20

]
= c1

[
6
11

]
+ c2

[
2
1

]
=⇒

[
c1

c2

]
=

[
6 2
11 1

]−1 [
4
20

]
=

[
2.25
−4.75

]
.
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It follows that[
Fk
Rk

]
= T k · x0 = 2.25T k · v1 − 4.75T k · v2 = 2.25 · 1.05k

[
6
11

]
− 4.75 · 0.65k

[
2
1

]
,

and so when k is large [
Fk
Rk

]
≈ 2.25 · 1.05k

[
6
11

]
,

because 0.65k approaches 0 (rapidly) as k grows large. Therefore

lim
k→∞

Rk

Fk
=

11

6
.

(iii) With p = 0.275, find the critical ratio ρ∗ such that if R0/F0 > ρ∗, then both populations
survive, and if R0/F0 ≤ ρ∗, then both populations die off. Explain your work.

Repeating the previous argument for the initial population vector x0 =

[
F0

R0

]
, we have

x0 = c1v1 + c2v2 and therefore

xk = T kp x0 = c1T
k
p v1 + c2T

k
p v2 = c1(1.05)kv1 + c2(0.65)kv2.

Now, since limk→∞ 0.65k = 0, it follows that the populations survive if and only if c1 > 0.

To see how c1 depends on x0, I will use Cramer’s rule:

c1 =

∣∣∣∣ F0 2
R0 1

∣∣∣∣∣∣∣∣ 6 2
11 1

∣∣∣∣ =
F0 − 2R0

−16
=

2R0 − F0

16
.

From this it follows that c1 > 0 if and only if 2R0 > F0. In other words, for the populations
to survive, the ratio R0/F0 must be bigger than 1/2, i.e., ρ∗ = 1/2.

(iv) Show that if (the predation parameter) 49/120 > p > 1/3, then both populations die off
(rapidly) if F0 > 0, regardless of R0. What happens when F0 = 0?

The characteristic polynomial of Tp is

ϕ(λ) = det(Tp − λI) =

∣∣∣∣ 0.5 0.3
−p 1.2

∣∣∣∣ = λ2 − 1.7λ+ (0.6 + 0.3p),

so eigenvalues of Tp are

λ1(p) =
1.7 +

√
2.89− 4(0.6 + 0.3p)

2
= 0.85 +

1

2

√
0.49− 1.2p

and

λ2(p) =
1.7−

√
2.89− 4(0.6 + 0.3p)

2
= 0.85− 1

2

√
0.49− 1.2p.

If 49/120 > p > 1/3, then

0 < 0.49− 1.2p < 0.49− 0.4 = 0.09

11



and therefore

0 < λ2(p) < λ1(p) < 0.85 +
1

2

√
0.09 = 1.

If x1(p) and x2(p) are eigenvectors for λ1(p) and λ2(p), respectively, then they are linearly
independent (because λ1(p) 6= λ2(p)), and we can write the initial population vector as a
linear combination: [

F0

R0

]
= u0 = c1x1(p) + c2x2(p).

Repeating the analysis of part (iii) shows that

xk = T kp x0 = c1λ1(p)kx1 + c2λ2(p)kx2 −→ 0,

because λ1(p)k → 0 and λ2(p)k → 0.

If F0 = 0 (no foxes), then the rabbit population grows according to the simpler model
Rk+1 = 1.2Rk, or Rk = (1.2)kR0. I.e., the two-population (predator-prey) model doesn’t
apply and the rabbit population grows exponentially.

Comments: It is intuitively obvious that the larger the predation parameter, the less likely
the populations will survive. So what happens when p ≥ 49/120?

(a) If p = 49/120, then Tp has only one eigenvalue (λ1 = λ2 = 0.85) and is not diagonal-
izable. But it can be shown that in this case Tp = BUB−1, where

U =

[
0.85 α(p)

0 0.85

]
,

for some real number α(p), from which it follows (with a little more work) that

T kp x = BUkB−1x −→ 0

for any x ∈ R2 in this case too.

F

R x

Tpx

Tp2x

Tp3x

Tp4x

Tp5x

Figure 2: Orbit of population vector xk = T kp x when p > 49/120.
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(b) If p > 49/120, then the eigenvalues of Tp are complex conjugates

λ1 = 0.85 + iβ(p) and λ2 = 0.85− iβ(p),

where β(p) =
√

1.2p− 0.49 is real and positive. In this case the orbit

{T kp x : k = 1, 2, 3, . . .}
spirals in towards 0 for every x ∈ R2, so both populations die off in this case as well. In
fact, as Figure 1 illustrates, the rabbit population dies off after a finite number of gener-
ations (somewhere between 4 and 5 in the figure), and with no rabbits, the fox population
then declines according to the simpler model Fk+1 = 0.5Fk.

10. Consider the function f(x) = ex defined on the interval [0, 1].

(a) Sketch the graph of its periodic extension to R with period 1, as well as its even and odd
periodic extensions to R with period 2.

Solution: The periodic extension of period 1 is the function f1(x) = ex for 0 < x ≤ 1, then
continued periodically so that for every integer n, if n < x ≤ n+ 1, then f1(x) = ex−n, see
Figure 8 for its graph.

The even periodic extension of period 2 is the function f2e(x), defined by f2e(x) = ex for
0 < x ≤ 1, f2e(x) = e−x for −1 < x ≤ 0, and then continued periodically, so that for every
integer n, if 2n− 1 < x ≤ 2n, then

f2e(x) =

{
ex−2n : 2n < x ≤ 2n+ 1
e2n−x : 2n− 1 < x ≤ 2n

Its graph is displayed in Figure 4.

The odd periodic extension of period 2 is the function f2o(x), defined by f2o(x) = ex for
0 < x ≤ 1, f2o(x) = −e−x for −1 < x ≤ 0, and then continued periodically, so that for
every integer n, if 2n− 1 < x ≤ 2n, then

f2o(x) =

{
ex−2n : 2n < x ≤ 2n+ 1
−e2n−x : 2n− 1 < x ≤ 2n

Its graph is displayed in Figure 5.

(b) Which of these periodic extensions will yield the best Fourier series expansion? Why?

Solution: The even periodic extension should produce the most quickly converging Fourier
series expansion because it is the only one that yields a continuous function.

(c) Compute the Fourier coefficients for all three periodic extensions. Were you right?

Solution:

(i) Period 1 extension: Denoting the coefficients of cos(2πnx) and sin(2πnx) by an and bn
respectively, we have

an = 2

ˆ 1

0

ex cos(2πnx) dx

= 2ex cos(2πnx)
∣∣∣1
0

+ 4πn

ˆ 1

0

ex sin(2πnx) dx

= 2(e− 1) + 4πnex sin(2πnx)
∣∣∣1
0
− 8π2n2

ˆ 1

0

ex cos(2πnx) dx

= 2(e− 1)− 4π2n2an

13
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Figure 3: Periodic extension with period 1: y = f1(x)

-3 -2 -1 0 1 2 3

1
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Figure 4: Even periodic extension with period 2: y = f2e(x)

so

(1 + 4π2n2)an = 2(e− 1) =⇒ an =
2(e− 1)

1 + 4π2n2
.

Likewise,

bn = 2

ˆ 1

0

ex sin(2πnx) dx

= 2ex sin(2πnx)
∣∣∣1
0
− 4πn

ˆ 1

0

ex cos(2πnx) dx

= −2πnan,

so

bn = −4πn(e− 1)

1 + 4π2n2
.

Thus the Fourier series for f1e is

f1(x) = (e− 1)

(
1 +

∞∑
n=1

2 cos(2πnx)

4π2n2 + 1
− 4πn sin(2πnx)

4π2n2 + 1

)

14
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Figure 5: Odd periodic extension with period 2: y = f2o(x)

In the figure below, the graph of f1 is displayed together with the truncation

(e− 1)

(
1 +

7∑
n=1

2 cos(2πnx)

4π2n2 + 1
− 4πn sin(2πnx)

4π2n2 + 1

)

of its Fourier series (dashed red line).

-3 -2 -1 0 1 2 3

1

2

3

Figure 6: Approximation of y = f1(x), truncating its Fourier series at n = 7.

(ii) Even extension (period 2): Since f2e is an even function, its Fourier series will consist
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only of cosine terms. Denoting the coefficients by an again, we have

an =

ˆ 1

−1

f2e(x) cos(πnx) dx = 2

ˆ 1

0

ex cos(πnx) dx (because f2e(x) cos(πnx) is even).

= 2ex cos(πnx)
∣∣∣1
0

+ 2πn

ˆ 1

0

ex sin(πnx) dx

= 2(e− 1) + 2πnex sin(πnx)
∣∣∣1
0
− 2π2n2

ˆ 1

0

ex cos(πnx) dx

= 2((−1)ne− 1)− π2n2an.

Hence

an =
2((−1)ne− 1)

π2n2 + 1
,

and therefore

f2e(x) = (e− 1) + 2
∞∑
n=1

((−1)ne− 1) cos(πnx)

π2n2 + 1
.

In the figure below, the graph of f2e is displayed together with the truncation

(e− 1) + 2
7∑

n=1

((−1)ne− 1) cos(πnx)

π2n2 + 1

of its Fourier series (dashed red line).

-3 -2 -1 0 1 2 3
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3

Figure 7: Approximation of y = f2e(x), truncating its Fourier series at n = 7.

(iii) Odd extension (period 2): Since f2o is an even function, its Fourier series will consist
only of sine terms. Denoting the sine coefficients by bn again, and using the fact that the product
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Figure 8: Approximation of y = f2o(x), truncating its Fourier series at n = 10.

of odd functions is even, we have

bn =

ˆ 1

−1

f2o(x) sin(πnx) dx = 2

ˆ 1

0

ex sin(πnx) dx (because f2o(x) sin(πnx) is even).

= 2ex sin(πnx)
∣∣∣1
0
− 2πn

ˆ 1

0

ex cos(πnx) dx

= − 2πnex cos(πnx)
∣∣∣1
0
− 2π2n2

ˆ 1

0

ex sin(πnx) dx

= 2πn((−1)n+1e+ 1)− π2n2bn.

Hence

bn =
2πn((−1)n+1e+ 1)

π2n2 + 1
,

and therefore

f2e(x) = 2π
∞∑
n=1

n((−1)n+1e+ 1) sin(πnx)

π2n2 + 1
.

In the figure below, the graph of f2o is displayed together with the truncation of its Fourier series
at n = 10 (dashed red line).

The coefficients of the even periodic extension are all on the order of 1/n2, while the other two
periodic extensions have coefficients on the order of 1/n, so, yes, I was right. This is also visible
in the graphs — the truncated Fourier series of the even periodic extension yields a much better
approximation of f2e than the other two truncated series do for their respective functions.

11. Let p(z) = anz
n + · · · + a1z + a0 be a non constant polynomial with complex coefficients (i.e.,

n > 0 and an 6= 0). Use Rouché’s theorem to show that p(z) has exactly n roots in C (counting
multiplicity).
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Solution. The idea is to show that if |z| = R is large enough, then

|anzn| >
∣∣an−1z

n−1 + · · ·+ a1z + a0

∣∣ .
It will then follow from Rouché’s theorem that anz

n and p(z) = anz
n+(an−1z

n−1 + · · ·+a1z+a0)
have the same number of zeros (namely n) inside the disk {z ∈ C : |z| < R}.
To find a sufficiently large R, first observe that if |z| > 1, then by the triangle inequality∣∣an−1z

n−1 + · · ·+ a1z + a0

∣∣ = |z|n
∣∣an−1z

−1 + · · ·+ a1z
1−n + a0z

−n∣∣
≤ |z|n

(
|an−1||z|−1 + · · ·+ |a1||z|1−n + |a0||z|−n

)
≤ |z|n

(
|an−1|z|−1 + · · ·+ |a1||z|−1 + |a0||z|−1

)
≤ |z|n ·

(
nM |z|−1

)
,

where M = max
0≤j≤n−1

|aj|. It follows that if |z| = R =
nM

|an|
+ 1, then |z| > 1 and nM |z|−1 < |an|,

from which it follows that∣∣an−1z
n−1 + · · ·+ a1z + a0

∣∣ ≤ |z|n · (nM |z|−1
)
< |anzn|.

12. Use Cauchy’s theorem and the countours γr (illustrated below) in C to show that

ˆ ∞
0

cos(αx2) dx =

√
π

8α
.

!R

R
"/4

The function exp(iαz2) is holomorphic in all of C (since d
dx

exp(iαz2) = 2iαz exp(iαz2) exists
in all of C). This means that if γ is any closed curve in C, then by Cauchy’s theorem,

˛
γ

exp(iαz2) dz = 0.

If z = x is real, then exp(iαx2) = cos(αx2) + i sin(αx2), thus the integral
´∞

0
cos(αx2) dx is the

real part of the integral
´∞

0
exp(iαx2) dx.

The idea then, is to find a closed contour γ that includes the positive real axis such that that the
integral of exp(iαz2) dz along the remainder of γ can be computed directly.

Observation 1: If we write z = r(cos θ + i sin θ), then

exp(iαz2) = exp
(
iαr2(cos 2θ + i sin 2θ)

)
= e−αr

2 sin 2θeiαr
2 cos 2θ.
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Now, if 0 < θ < π/2, then sin 2θ > 0 and | exp(iαz2)| = e−αr
2 sin 2θ which goes to 0 as r → ∞,

for fixed θθθ. This would appear to indicate that

lim
r→∞

ˆ
γ1(r)

exp(iαz2) dz = 0,

where γ1(r) is the eighth of a circle in the first quadrant of radius r with the counterclockwise
orientation, depicted below. More on this later.

-1 0 1 2 3

1

2

𝛑/4

Figure 9: The curves γ1(r) and γ2(r).

Observation 2: If z = teiπ/4, then z2 = t2eiπ/2 = it2 so exp(iαz2) = e−αt
2

in this case. It
follows that if γ2(r) is the ray from 0 to reiπ/4(oriented towards 0 as depicted above), then

ˆ
γ2(r)

exp(iαz2) dz =

ˆ 0

r

e−αt
2

eiπ/4 dt = −1 + i√
2

ˆ r

0

e−αt
2

dt,

(since along γ2(r), dz = eiπ/4 dt). Hence as r →∞, the real part of
´
γ2(r)

exp(iαz2) dz approaches

the limit

− 1√
2

ˆ ∞
0

e−αt
2

dt = − 1√
2

√
π

4α
= −

√
π

8α
,

because ˆ ∞
0

e−αt
2

dt =
1√
α

ˆ ∞
0

e−x
2

dx =
1√
α
·
√
π

2
=

√
π

4α
.

Conclusion:‡ Let γr be the closed curve comprised of the segment [0, r] on the real line, γ1(r)
and γ2(r) (with the standard counterclockwise orientation), then

˛
γr

eiαz
2

dz =

ˆ r

0

eiαx
2

dx+

ˆ
γ1(r)

eiαz
2

dz +

ˆ
γ2(r)

eiαz
2

dz = 0

from which it follows, upon comparing real parts, that
ˆ r

0

cos(ax2) dx = <
(ˆ r

0

eiαx
2

dx

)
= −<

(ˆ
γ1(r)

eiαz
2

dz +

ˆ
γ2(r)

eiαz
2

dz

)
.

‡Except for the fun part.
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Now, if it is indeed true that

lim
r→∞

ˆ
γ1(r)

eiαz
2

dz = 0,

then it follows that

ˆ ∞
0

cos(αx2) dx = lim
r→∞

ˆ r

0

cos(αx2) dx = lim
r→∞
−<

(ˆ
γ1(r)

eiαz
2

dz +

ˆ
γ2(r)

eiαz
2

dz

)
= 0 +

√
π

8α
,

as claimed.

The fun part: We want to show that
´
γ1(r)

eiαz
2
dz → 0 as r → ∞, which we do using the

inequality ∣∣∣∣ˆ
Γ

f(z) dz

∣∣∣∣ ≤ max
z∈Γ
|f(z)| · `(Γ),

where `(Γ) is the length of the curve Γ. In this case, `(γ1(r)) = πr/4 < r and |eiαz2| = e−αr
2 sin 2θ,

and since for a constant c > 0, xe−cx
2 → 0 (rapidly) as x → ∞, we would like to say that

re−αr
2 sin 2θ → 0 (which implies that the integral goes to 0). But it’s not quite that simple,

because if for example θ = 1/r2 with r large (so θ is very close to 0) then sin 2θ ≈ 2θ = 2/r2, in
which case

e−αr
2 sin 2θ ≈ e−αr

22θ = e−2α,

which is bounded away from 0. On the other hand, this phenomenon only occurs on a very short
portion of γ1(r), which suggests the following fix.

For a (very small) angle θr > 0,§ we divide γ1(r) into two parts, Γ1(r) and Γ2(r), where Γ1 is the
(very short) portion of γ1(r) where 0 ≤ θ ≤ θr and Γ2 is the portion of γ1(r) where θr < θ ≤ π/4.
The lengths of these two parts are

`(Γ1(r)) = rθr and `(Γ2(r)) = r
(π

4
− θr

)
< r.

Next, for any θ between 0 and π/4, e−αr
2 sin 2θ ≤ 1 (since sin 2θ ≥ 0) and therefore∣∣∣∣ˆ

Γ1(r)

eiαz
2

dz

∣∣∣∣ ≤ `(Γ1(r)) · 1 = rθr.

On the other hand, if π/4 ≥ θ > θr > 0, then sin 2θ > sin 2θr > 0 so

e−αr
2 sin 2θ < e−αr

2 sin 2θr .

Furthermore, if 0 < θr < π/6, then sin 2θr > θr,
¶ and it follows that if θr < π/6, then∣∣∣∣ˆ

Γ2(r)

eiαz
2

dz

∣∣∣∣ ≤ `(Γ2(r))e−αr
2 sin 2θr < re−αr

2 sin 2θr < re−αr
2θr .

Combining these two results, we have∣∣∣∣ˆ
γ1(r)

eiαz
2

dz

∣∣∣∣ =

∣∣∣∣ˆ
Γ1(r)

eiαz
2

dz +

ˆ
Γ2(r)

eiαz
2

dz

∣∣∣∣ ≤ ∣∣∣∣ˆ
Γ1(r)

eiαz
2

dz

∣∣∣∣+∣∣∣∣ˆ
Γ2(r)

eiαz
2

dz

∣∣∣∣ < rθr+re
−αr2θr ,

§Which, as indicated, we choose to depend on r.
¶Because: (i) sin 0 = 0 and (ii) (sin 2x− x)′ > 0 for 0 < x < π/6. Fill in the details.
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Finally, given ε > 0, if θr = ε/2r, then

rθr = ε/2 and re−αr
2θr = re−(αε/2)r.

Since re−cr → 0 as r → ∞ for any c > 0, it follows that (for fixed ε) there is an Rε such that
if r > Rε, then

re−(aε/2)r <
ε

2
.

Hence, for r > Rε ∣∣∣∣ˆ
γ1(r)

eiαz
2

dz

∣∣∣∣ < ε

2
+
ε

2
= ε,

and since ε was arbitrary, it follows that

lim
r→∞

ˆ
γ1(r)

eiαz
2

dz = 0,

as claimed.
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