ucCsC AMS 211 FALL 2015

Review Questions for Final Exam — Solutions

1. (a) From first principles, find an integrating factor u(x) for the general first order linear differ-
ential equation

dy B
ar ()y = q(z)
Solution.
We want to find u(x) such that
, d
w@)(y +pla)y) = - (p@)y)-

This holds if and only if Z_M = p(z)p(x), which in turn implies that
x

and integrating both sides leads to

In(u(z)) = /p(a:) dz,

so u(x) = exp([ p(z) dz).
(b) Solve the initial value problems
d
i. sin xd—y —2cosry = sin’z; y(r/4) = 0.
x
Solution. First divide through by sinx:

d
dy _,co8T

.9
- ) 1
dx sin y=sina (1)

Now, find the integrating factor:

p(z) = exp (—2/ st dx) = exp(—2In(sinx)) = sin"%z.

sinx

Next, multiply equation (1) through by sin™2 x:

dy COS ¥ d
.. —92 i —2
— -2 = — = 1.
Sin ( : y) I (y sin :L‘)

Integrate and solve for y:
ysin?r =2+C = y= (v + O)sin’r.

Finally, use the boundary condition to solve for C':

0= y(r/4) = (n/4+C)sind(n/4) = T+ C = C =T
y = (z — 7/4) sin’z.



d
ii. d—y + 2xy = 3xy®;  y(0) = 1. (This one needs a substitution to make it linear.)
x

Solution. As alluded to, this is a Bernoulli equation, and the substitution u = y~2, which

d
implies that % = —%y?’ﬁ, transforms the original equation to
du
— —4dau = —6x 2
dx Y ( )

after multiplication by —2y=3. The integrating factor for (2) is

() = exp (—4 / md:p) =2,

and multiplying (2) through by this factor gives

du d 2 2
—4 _ ( —2x ) — _ —2x )
e (_d:c :cu> 7o \ue 6re

Integrating both sides and solving for u, we have

6 3 3
we™ =2 [ —dze ™ dr =2 4+ 0 = u=2>+Ce*.
4 2 2
The boundary condition y(0) = 1 implies that w(0) = 172 = 1, and using this to solve for C,
we have 3
1= 5 +C = (C=—=
sou=1(3—e*), and
_ 2
y:u1/2: —3_62$2.

Comment: The last equation can be rewritten as y' = z(2 — 3y*) and the function on the
right is continuously differentiable with respect to both variables in the entire xy-plane (which
is an infinite rectangle centered at (0,1)). Nonetheless, the solution we found is only defined

in the interval ( Ve Ve ) —0.741,0.741) around 0.

2. (a) Use the definition to find the Laplace transforms of h(z) = H(x — 2) — H(x — 4), where

H(z) is the Heaviside function

1 : >0
H(x):{o : xzo

Solution.

1 4 —2s —4s

L(h(x)) = /OOO(H(x —2)—H(x—4))e ™ de = /2 e Pdr=——e" =

S

(b) Use the Laplace transform method to solve the initial value problem

y'+2y —3y=H(z)—- H(z—1); y(0)=1,y'(0)=0.



Solution. The idea is to apply the Laplace transform to both sides of the differential equa-
tion. This incorporates the boundary conditions because:

L(y') =sY(s) —y(0) and L(y") =5Y(s) —y(0)s — ¢/(0),

where Y(s) = L(y). We then solve the resulting algebraic equation for Y (s) and use the
inverse Laplace transform to find 3.t

In this case, we have

1 —S
Ly +2y = 3y) = L(H(x) = Hx — 1)) = ¥ (s) =5 +25Y () =2 =8V (s) = - — :
= Y(s)(s*+25—3) = — 542
s
Therefore,
s24+2s+1 1
Y — s
PG e D
_y3, 1/3  1/3¢*  1/de™  1/12¢7°
s s—1 543 s s—1 5+ 3
From section 13.2.2 in the book, we learn that
—1/ —bs . 0 : 0<2x<b . _ _
L7 (e F(S))_{f(x—b) s b = f(r —b)H(x —b)
where f(x) = L7Y(F(s)). This means that
(131 1/3  1/3¢~  1/4e=* 1/12¢~
_ 1 _=/= _
y=~ < s+s—1+3—|—3 s +s—1+ 5+3
_ ! +e” + le’Sx - lH(x —1)+ 1e””’lﬂ(yg - 1)+ ie’?’(:’f’l)H(yc - 1)
3 3 3 4 12
. Solve the initial value problem
Py | dy
yo) + QE + 5y = 3cos(2t);  y(0) =14'(0) = 0. (3)

Solution. Two methods...

(i) Undetermined coefficients: First find the general solution of the complementary (homo-
geneous) equation

d’y dy
2~ + 5y = 4
a e Y 4)
—24++/4—20
Characteristic equation — 1> +2r+5=0 = r = 5 — r=—1%2i, so a basis

for the space of solutions of equation (4) is given by

uy(t) = 2 ond us(t) = e(-1720t

"In the most common cases, we can ‘read’ the inverse transform from a table.
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Figure 1: Graph of the solution of ¢y + 2y’ — 3y = H(x) — H(z — 1); y(0) =1, ¢'(0) = 0.

and a basis of real-valued solutions is given by

1
Y1 = §(U1 +up) = e " cos2t and y» = —(uy — us) = e "sin 2t.

2
Thus, the general solution of equation (4) is
Yn = C1y1 + oy = € (cy cos 2t + ¢y sin 2t).

Next, find a particular solution of the differential equation (3) using the method of undeter-
mined coefficients, i.e., look for a solution of the form y, = Acos2t + Bsin2t. We have
y, = —2Asin2t + 2Bcos2t and y, = —4Acos2t — 4Bsin2t, and substituting these into the
original equation gives

Yy + 2y, + 5y, = cos 2t(—4A + 4B + 5A) 4 sin 2¢(—4B — 4A 4+ 5B) = 3cos 2t,

and leads to the pair of linear equations

A+4B =3
—4A+B=0
with solution
‘34‘ ‘ 13|
0 1 3 -4 0 12
A = —mm—-——-—--a0 0 _—" — B -_—— e —
a1 e 1 4| 17
4 1 4 1

It follows that the general solution of (3) is

3 12
Y=y, +uyn= 7 ¢os 2t + - sin 2t + e ~*(cy cos 2t + ¢y 8in 2t).

4



Finally, we use the initial conditions, y(0) = y'(0) = 0 to determine ¢y and co. First, we have

O:yp(O):ﬁ—f—Cl > 01:—1—7‘
Second, ), = — sin 2t + 22 cos 2t + e~ ((2¢2 — ¢1) cos 2t — (2¢1 + ¢2) sin2t) , s0
24 27 27
BO) = +2e-—a=2atym = a=—3.

and the solution to the initial value problem is

_ 3 cos2t 4 2 ginot— o ~t(6 cos 2t + 27 sin 2t)
—_— — JE— 1 _—— 1 .
Y 17COS 178 346 COS S

(ii) Laplace transform: First take Laplace transforms of both sides of equation (3), using the
giwen boundary conditions

dy . dy

L <— +2— + 5y) = L(3cos(2t)) = 5*Y(s) +2sY(s) +5Y(s) = 55

dt? dt s2 4+ 4’

where Y (s) is the Laplace transform of the (as-of-yet unknown) solution y. Next, solve the
equation above for Y (s):

Y (s)(s* +2s+5) = 35 = Y(s) = = 4)(8328+ 2515

s24+4
Now use a partial fraction decomposition of the rational function on the right in order to more
easily identify the inverse Laplace transform. Note that both quadratic factors in the denominator
cannot be factored over the real numbers, and this leads to a partial fraction decomposition of
the form

3s _As+B Cs+ D
(824 4)(s2+25+5)  s24+4 * s2+2s+5
(As+ B)(s* 4+ 25+ 5) + (Cs+ D)(s* + 4)
(s2+4)(s2+25+5)
(A+C)s* + (2A+ B+ D)s* + (bA+2B +4C)s + (5B + 4D)
(s2+4)(s2+2s5+5)
Comparing the coefficients of s°,s%,s and the constant coefficient on both sides of the equation
above, yields a system of four linear equations in the unknown coefficients A, B,C and D:

A+C=0
2A+B+D =0
5A+2B+4C =3
5B +4D =0

2

The first and fourth equation show that C' = —A and D = —%B, and substituting these expres-
sions in the second and third equation gives the pair of equations

1
2A—-B=0
4

A+2B=3



with solution

‘ 0 —1/4 ‘ ‘ 2 0 ‘

3 2 1 3

A = = 3/4 = i and B = = 0 = %
2 —1/4 17/4 17 2 —1/4 17/4 17
1 2 1 2

It follows that C' = —1—37 and D = —i’—g, and therefore

3s
YO = s 25+ 5)

3 24 3 30
_wStR wStw

s24+4 s24+254+5
3 S 12 2 3 s+1 27 2

T P44 TSR 4 17 s+1P44 34 (srip+d

Note that the coefficients of the rational functions in the second row have been distributed so that
the rational functions in the third row all have the form

s+a or b
(s +a)?+b? (s+a)?+b*

whose inverse Laplace transforms are
e cos(bt) and e sin(bt)

respectively. It follows that the solution is

7 P44 17 #1417 (s+1)P+4 34 12

y(t):ﬁ_l(Y(s))zﬁ_l(?) s 12 2 3 s+1 27 2 +4>

which is (not surprisingly) the same solution we found the first time around.
Conclusion: The algebra is unavoidable, so pick your poison.

. Use Green’s theorem to evaluate the integral
2 2
yﬁ xy dx + 2zy° dy,
c

where C' is the triangle in R? with corners (0,0), (0,2) and (1,4).

Solution. Setting P = 2%y and Q = 2zy*, we have P, = 2* and Q, = 2y*.

theorem, we have

Invoking Green’s

yg 2y dx + 22y dy = / 2y? — 2% dx dy,
c T

where T is the triangular region bounded by C':

T={(r,y):0<2x<1and4dx <y <2z+2}.



It follows that

51{ 22y dx + 2xy* dy /
C 0

1

2a:+2
— 2% dy dx

T

(22 +2)° — (42)*) — 2° (20 + 2 — 4z) du

C«O|I\DN

0

2
—/ —5323 + 2122 + 242 + 8 dx

—_

3
2 ( 53 55
— (= 4+7+12+8
3(4++ +) -

. Compute the surface integral / x? 4 2% dS over the surface
s

S={(z,y,2): 2 +y*=2* and 0< 2 <1}.

Suggestion: Use the parametrization r = p cos 8i+ psin 0j 4 pk for the cone, with 0 < p <1 and

0<0<2m.
Solution: With the suggested parametrization we have
r, =cosbi+sindj+k and ryg = —psinbi+ pcosbj,
from which it follows that
S =|Ir, x rg|| dA = || — pcosbi — psinbj + pk| dA = V2pdp db.

Therefore,
2m 1

/ 2 +2y%dS = / / (p2 cos? 0 + 2p* sin’ 9) V2pdp db

° ° gw 1

- \/5/ (1 +sin29)/ p*dpdf
0 0
27
- \/—E/ |+ sin?0dg = V2T
1/, 4

. If p(x,y, ) is a scalar field and v(z,y, z) is a vector field, show that
Vx(Ve)=0 and V-(Vxv)=0.

Solution: For the scalar field ¢, we have

do. D, D
Vo= it gt gk

so0, assuming that all the second order derwatives are continuous, so that ©py = Qyz, P2z =

and @y, = P.y, it follows that
i j k

v X (V : 90) = a/ax a/ay 8/82 = (szy - (Pyz)i + ((sz - szx).] + (Spyx - pry)k =

Pz Py Pz

()OZZE



For the vector field v = vi(z,y, 2)i + vo(x, y, 2)j + vs(x, y, 2)k, we have

_ (Ovs  Ouy, Jvy  Ovs ) . dvy  O0uy
VXV_(@y 62)1+(6z 8w>J+(8m 8y)k'

Therefore (once again assuming that all second order partial derivatives are continuous)

. 821}3 5’2’02 82U1 82’03 822]2 821}1 .
Vo (Vxv) = 0xdy 020z * dydz  Oydx * 020r 020y 0

. Suppose that u = (¢(z,y),¥(z,y),0) is a continuous vector field confined to R? that is both
solenoidal and irrotational. Show that the functions ¢ and ¢ are both harmonic (potential)
functions (i.e., they are each solutions of Laplace’s equation).

Solution. If u is solenoidal, then its divergence is 0, i.e.,

o oY

Viu=—+—=0

T o oy ’

s0 1y, = —¢,. If u is irrotational, then its curlis 0, i.e.,
i j k
Vxu=|2 2 2|=(2_2x_g

ooy oz or 0Oy
o ¢ 0

so ¢, = ¢,. It follows that the function f(z + iy) = ¥(x,y) + i¢(x,y) satisfies the Cauchy-
Riemann equations and is therefore analytic in C.

. A (left) stochastic matrix A is an n X n matrix,

n

with nonnegative coefficients whose column-sums are all 1, i.e., for which Z a;; = 1 for each j.
i=1
(a) Show that a stochastic matrix always has an eigenvalue equal to 1.

Proof 1. If 1 is the n x n identity matriz, then the column-sums of A —1 are all 0, because
the sum of the entries in the j"* column of A —1 is

aj+ag +---+ (aj; — 1)+ +an; = (@ + - +an;) —1=0.

It follows that the sum of the rows of A — 1 is the zero (row) vector, i.e., the rows of A — 1
are linearly dependent, so rank(A —1) < n—1. This implies that det(A —1I) =0, so A =1
is an eigenvalue of A.

Proof 2: Ifx=[11 --- 1]T, then

ai; Qg1 -t Qpl 1 ail + ag1 + -0+ Q1
AT A2 A2 -+ Qp2 1 aia +ags + -+ apa 1
X = . i . i . — . — )
A1p A2n *+ Qpp 1 A1p + Aoy + + -+ + Qpn 1

i.e., ATx = x, which means that x is an eigenvector of AT with eigenvalue X = 1. But the
eigenvalues of A and AT are the same, so X = 1 is an eigenvalue of A too.

8



(b) Find the eigenvalues and corresponding eigenvectors of the stochastic matrix

0.7 0.8
A= { 0.3 0.2 } '

Solution. Eigenvalues:

0.7—X 08

det (A = AL = ' 03 0.2-)

‘ =M —09A-01=(A—-1)(A+0.1),

so the eigenvalues of A are A\ =1 and \y = —0.1.
Figenvectors: we solve the equations (A —I)x = 0 and (A + 0.11)x = 0.

—-0.3 0.8 x 0 3
A =1: [ 0.3 —0.8}{3;1_[01 :>—0.3x+0.8y—O:>y—§x,

50 X1 = [ 3 ] 1s an eigenvector with eigenvalue Ay = 1.

0.8 0.8 x 0
mcar [0 98)[5][8] = svym0 = ymcs
50 X9 = [ 1 } s an etgenvector with eigenvalue Ay = —0.1.

(c) Show that if u = [ Z ], then there is a vector w that depends only on a + b such that
A'u — w.

Solution. The eigenvectors of A are linearly independent, so for any u, we have

From this it follows that

wucan 3] e[ a8 racorr| 18],

where

In other words,

Anu—>(a+b)[§ﬁﬂ.

9. In a large forest, foxes prey on rabbits while the rabbits feed on the (unlimited) vegetation. The
change over time of the fox and rabbit populations in this forest is modeled by the following

linear system:
Ri11 —-p 1.2 Ry |’

9



where F} is the size of the fox population in year k, Ry is the size of the rabbit population in
year k and p is a positive number called the predation parameter, that accounts for deaths in
the rabbit population due to predation by foxes. The matrix, 7},, on the right hand side of the
equation is called the transition matriz of the model.

(i) Find the eigenvalues and corresponding eigenvectors for the transition matrix when the
predation parameter is p = 0.275.

05 0.3

When p = 0.275, the transition matriz is T, = { 09275 12

] and the characteristic

equation of T, is

05—\ 0.3 B 9 B
0975 1.2 — ) ’ =0 = XN —17X2+0.6825=0,
whose roots are
1.7 1.72 —4.0.6825 1.7 —+/1.72 —4-0.6825
Ao BTV . 105 and Ay = v . — 0.65.

Next, we find eigenvectors by finding (nonzero) solutions to the systems (T'— MI1)x =0
and (T — X )x = 0.
For Ay = 1.05, we have the system

o ass ][4 ]= o)

This reduces to the single equation —0.55x 4+ 0.3y = 0, of which x = 6 and y = 11 is a

solution, so
v — 6
Tl
For Ay = 0.65, we have the system
—-0.15 0.3 x| |0
—0.275 0.55 y| |0]°

This reduces to the single equation —0.15x 4+ 0.3y = 0, of which x = 2 and y =1 is a

solution, so
vo — 2
S|

R
(ii) If Fo =4, Ry =20 and p = 0.275, what can you say about the limit lim o

k—o00 k

is an eigenvector for Ay.

is an eigenvector for \s.

4 : o 2
20 } as a linear combination of vi = 1 and vy = [ 1 }
46, .02] o [a]_ 6 2147 [ 225
20 | ~ 11| T o T 20 | T | —475 |

10

First, we express xo = l




(iii)

(iv)

It follows that

{ g’“ } =T". %0 =225T"% vy —4.75T" - v, = 2.25 - 1.05" [ 161 } —4.75 - 0.65" { 2 } ,
k

and so when k is large

Fr | _ k| ©
{Rk}~2.25-1.05 [11},

because 0.65% approaches 0 (rapidly) as k grows large. Therefore

With p = 0.275, find the critical ratio p* such that if Ry/Fy > p*, then both populations
survive, and if Ry/Fy < p*, then both populations die off. Explain your work.

Fo
Ry

Repeating the previous argument for the initial population vector xo = [ ], we have

Xg = 1V] + caVo and therefore
x, = Trxg = c1Thvi + 2Ty vy = ¢1(1.05) vy + ¢2(0.65)"vs.

Now, since limy_,o 0.65% = 0, it follows that the populations survive if and only if ¢; > 0.
To see how c¢; depends on xq, I will use Cramer’s rule:

F, 2
_‘Ro 1‘_F0—2R0_2R0—F0
“TTe 2| <16 16
‘11 1‘

From this it follows that c; > 0 if and only if 2Ry > Fy. In other words, for the populations
to survive, the ratio Ry/Fy must be bigger than 1/2, i.e., p* = 1/2.

Show that if (the predation parameter) 49/120 > p > 1/3, then both populations die off
(rapidly) if Fy > 0, regardless of Ry. What happens when Fy = 07

The characteristic polynomial of T, s

0.5 0.3

o(N) = det(T, — \I) = ’ 1

‘ =X\ — 172+ (0.6 4 0.3p),

so eigenvalues of T), are

1.7+ /2.89 — 4(0.6 + 0.3 1
A(p) = v 2( i p>:0.85+§\/0.49—1.2p

and

1.7—+/2.89 —4(0.6 + 0.3 1
a(p) = v 5 (06+03p) _ g5 V049 = 12p.
If49/120 > p > 1/3, then

0<049—-12p<049—-0.4=0.09

11



and therefore
1
0< )\g(p) < /\1(])) < 0.85 + 5\/ 0.09 =1.

If x1(p) and x5(p) are eigenvectors for Ay (p) and Aa(p), respectively, then they are linearly
independent (because \1(p) # \a(p)), and we can write the initial population vector as a
linear combination:

F
[ R(()) } = uy = c1X1(p) + caxa2(p).
Repeating the analysis of part (iii) shows that
Xp = T;CXO = C1A1(p)kx1 + CQAz(p)kXQ — 0,

because A\ (p)* — 0 and Xo(p)* — 0.

If Fy = 0 (no foxes), then the rabbit population grows according to the simpler model
Rpy1 = 1.2Ry, or Ry, = (1.2)Ry. Le., the two-population (predator-prey) model doesn’t
apply and the rabbit population grows exponentially.

Comments: [t is intuitively obvious that the larger the predation parameter, the less likely
the populations will survive. So what happens when p > 49/1207

(a) If p = 49/120, then T, has only one eigenvalue (A, = Ao = 0.85) and is not diagonal-
izable. But it can be shown that in this case T, = BUB™', where

o[ ]

for some real number a(p), from which it follows (with a little more work) that
Tyx=BU"B 'x — 0

for any x € R? in this case too.

Figure 2: Orbit of population vector x; = ijx when p > 49/120.

12



(b) If p > 49/120, then the eigenvalues of T, are complex conjugates
A =0.85+i8(p) and Xy = 0.85—if(p),
where B(p) = /1.2p — 0.49 is real and positive. In this case the orbit
{Tix:k=1,23,..}

spirals in towards 0 for every x € R2, so both populations die off in this case as well. In
fact, as Figure 1 illustrates, the rabbit population dies off after a finite number of gener-
ations (somewhere between 4 and 5 in the figure), and with no rabbits, the fox population
then declines according to the simpler model Fy,q1 = 0.5F.

10. Consider the function f(x) = e* defined on the interval [0, 1].
(a) Sketch the graph of its periodic extension to R with period 1, as well as its even and odd

periodic extensions to R with period 2.

Solution: The periodic extension of period 1 is the function fi(z) = e* for 0 < x <1, then
continued periodically so that for every integer n, if n < x <n+ 1, then fi(x) =", see
Figure 8 for its graph.
The even periodic extension of period 2 is the function fo.(x), defined by for(x) = € for
0<z<1, foo(x) = €™ for —1 < <0, and then continued periodically, so that for every
integer n, if 2n — 1 < x < 2n, then

foul) = er2n . In<r<2n+1

2V T e 9 1 < < 2n

Its graph is displayed in Figure 4.
The odd periodic extension of period 2 is the function fa,(x), defined by foo(x) = € for

0 <z <1, foolr) = —e™ for =1 < x < 0, and then continued periodically, so that for
every integer n, if 2n — 1 < x < 2n, then

T . Ip<x<2n+1
fool) = { -

—e?r T . n—1<ax<2n
Its graph is displayed in Figure 5.
(b) Which of these periodic extensions will yield the best Fourier series expansion? Why?

Solution: The even periodic extension should produce the most quickly converging Fourier
series expansion because it is the only one that yields a continuous function.

(c) Compute the Fourier coefficients for all three periodic extensions. Were you right?
Solution:

(i) Period 1 extension: Denoting the coefficients of cos(2mnx) and sin(2wnz) by a, and by,
respectively, we have

1
an = 2/ e” cos(2mnx) dx
0

1 1
= 2¢" cos(27mx)‘ + 47 / e’ sin(2mne) dx
0 0

1
=2(e — 1) + 4mne®sin(2mnz)

1
— 8m%n? / e cos(2mnx) dx
0 0

=2(e — 1) — 4n’n’a,

13



Figure 3: Periodic extension with period 1: y = fi(x)

Figure 4: Even periodic extension with period 2: y = fo.(2)

50
2(e—1)
22\ _ _
(1“—47'( n )an—Q(e—l) - &n—m.
Likewise,
1
b, = 2/ e” sin(2mnx) dx
0
1 1
= 2¢e"sin(2mnx) —47m/ e” cos(2mnzx) dx
0 0
= —27na,,
50
_ dmn(e—1)
" 1+ 4m2n2’

Thus the Fourier series for fi. is

fil) = (e=1) (1 Y ZeoslZmne)  dmn sin(?m))

— 4m2n2 +1 4m2n2 4+ 1

14



-2.5]

Figure 5: Odd periodic extension with period 2: y = fo,(2)

In the figure below, the graph of fi is displayed together with the truncation

(e—1) (1 . Z 2cos(2mnx)  Amn sin(27m:c)>

4m2n2 + 1 4m2n2 + 1

n=1

of its Fourier series (dashed red line).

Figure 6: Approximation of y = fi(x), truncating its Fourier series at n = 7.

(ii) Even extension (period 2): Since fo is an even function, its Fourier series will consist

15



only of cosine terms. Denoting the coefficients by a,, again, we have
1
a, = foe(x) cos(mnx) de = 2/ e cos(mnx) dx (because fo.(x) cos(mnz) is even).
0

1 1
= 2¢" cos(mnx)| + 27m/ e’ sin(mnx) dr
0 0

] 1
=2(e — 1) + 2mne’sin(mnz)| — 27r2n2/ e” cos(mnzx) dx
0 0
=2((=1)"e — 1) — m*n’a,.
Hence
2((=D" —1)
afn = T 9 9 4
mn? +1

and therefore

fol) = (e — 1) +22 e — 1) cos(mm).

mn? + 1
In the figure below, the graph of fa. is displayed together with the truncation
7

(e—1)+2) ((=1)" — 1) cos(nz)

m2n2 4+ 1

n=1

of its Fourier series (dashed red line).

Figure 7: Approximation of y = fo.(z), truncating its Fourier series at n = 7.

(iii) Odd extension (period 2): Since fo, is an even function, its Fourier series will consist
only of sine terms. Denoting the sine coefficients by b, again, and using the fact that the product

16



11.

Figure 8: Approximation of y = fs,(z), truncating its Fourier series at n = 10.

of odd functions is even, we have

1 1
b, = / foo(x) sin(mnx) dz = 2/ e” sin(mnx) dz (because fo,(x) sin(mnz) is even).
-1 0

1
= 2e”sin(mnx)

1
- 27m/ e cos(mnzx) dx
0

0

= — 2mne” cos(mnz)
0

=2mn((—1)""e + 1) — wn%b,.

1 1
- 27r2n2/ e” sin(mnx) dx
0

Hence
b — 2mn((—1)"e + 1)

n Y

m2n2 +1

and therefore

2 n((=1)"*te in(mnx
f2e<x>:2ﬂ-z (( 1) 7T2n—2|_—i)1s ( )

In the figure below, the graph of fs, is displayed together with the truncation of its Fourier series
at n =10 (dashed red line).

The coefficients of the even periodic extension are all on the order of 1/n?, while the other two
periodic extensions have coefficients on the order of 1/n, so, yes, I was right. This is also visible
in the graphs — the truncated Fourier series of the even periodic extension yields a much better
approximation of foe than the other two truncated series do for their respective functions.

Let p(z) = a,z" + -+ a1z + ag be a non constant polynomial with complex coefficients (i.e.,
n > 0 and a, # 0). Use Rouché’s theorem to show that p(z) has exactly n roots in C (counting
multiplicity).

17



12.

Solution. The idea is to show that if |z| = R is large enough, then
lanz"| > }an_lzn_l + -t az+ ao} )

It will then follow from Rouché’s theorem that a,z" and p(z) = a,2" + (ap_12"" 1+ +a12+ag)
have the same number of zeros (namely n) inside the disk {z € C : |z| < R}.

To find a sufficiently large R, first observe that if |z| > 1, then by the triangle inequality
}an_lz”_l + - taz+ a0| = |z]" ]an_lz_l +oda T+ agz_"‘

< 2" (Janall2l ™+ a2 + Jaol |2 ™)

< 2" (lan—a|z]7" 4+ laal[2] 7" + aol 2] 7) < J2[™ - (nM]2] ™),

M
i 1, then |z| > 1 and nM|z|™' < |a,|,

where M = max ) \aj|. It follows that if |2| = R =

0<j<n—

from which it follows that

[an]

|an_12""" 4z +ag] < 2| (nM 2T < fanz".

Use Cauchy’s theorem and the countours ~, (illustrated below) in C to show that

N ) dr = | —.
/0 cos(ax”) dx ™

Tr

/4

The function exp(iaz?) is holomorphic in all of C (since L exp(iaz?) = 2iazexp(iaz?) exists

in all of C). This means that if v is any closed curve in C, then by Cauchy’s theorem,
%exp(iazg) dz = 0.
~

If z = x is real, then exp(iaa?) = cos(ax?) + isin(ax?), thus the integral [° cos(aa?) dx is the
real part of the integral [~ exp(ioa?) dx.

The idea then, s to find a closed contour ~y that includes the positive real axis such that that the
integral of exp(iaz?) dz along the remainder of v can be computed directly.

Observation 1: If we write z = r(cosf + isin@), then

—ar?sin 20 eiar2 cos 260

exp(iaz?) = exp (iar®(cos26 +isin26)) = e

18



Now, if 0 < 6 < m/2, then sin20 > 0 and |exp(iaz?)| = e~ 520 which goes to 0 as r — o0,
for fixed 0. This would appear to indicate that

lim exp(iaz?) dz = 0,
r—00 " (7")

where v1(r) is the eighth of a circle in the first quadrant of radius r with the counterclockwise
orientation, depicted below. More on this later.

A
"

Figure 9: The curves v (r) and (7).

Observation 2: If z = te™™/*, then 22 = 12¢™/% = it? so exp(iaz?) = e~ in this case. It
follows that if y»(r) is the ray from 0 to re'™* (oriented towards 0 as depicted above), then

0 . T
, 1
/ exp(iaz?) dz = / e~ e/ gt = — al / e~ dt,
Y2 (r) r \/§ 0

(since along (1), dz = €™/*dt). Hence asr — 0o, the real part of fw(r) exp(iaz?) dz approaches

the limit
1 [ _ e 1 |/ [
— e Vdt=——]/—=—4/—,
V2 /o V2V da S«

o° 2 1 o, 1
/ e”‘tdt:—/ e’xdx:—-ﬁ: 1.
0 va o Va o2 4o

Conclusion:* Let 7, be the closed curve comprised of the segment [0,7] on the real line, 1 (r)
and yo(r) (with the standard counterclockwise orientation), then

?{ el dy = / el dy + / e 1z + / ¢ dy =0
r 0 71(7) 72(7)

from which it follows, upon comparing real parts, that

/ cos(az®) dr = R (/ el dx) =-—R (/ e dz + / el dz) :
0 0 71(r) 72(7)

because

tExcept for the fun part.
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Now, if it is indeed true that
lim L 0,
r—00 )

then it follows that

T—00 0 7—00

/ cos(ax?) dr = lim cos(ar?) dr = lim —R (/ e dz + / eio?? dz> =0+4/—
0 71(r) Y2(r)

as claimed.

The fun part: We want to show that f%(r) e dz — 0 asr — 0o, which we do using the

inequality
[ e
r

where ((T) is the length of the curve T. In this case, ((v1(r)) = 7r/4 < r and |’*"| = e~ sn20,
and since for a constant ¢ > 0, ze " =5 () (rapidly) as © — oo, we would like to say that
re—or’sin2 _y () (which implies that the integral goes to 0). But it’s not quite that simple,
because if for example O = 1/r? with r large (so 0 is very close to 0) then sin 20 ~ 20 = 2/r?, in

which case

< max |f ()] - (),

—ar?si —ar? _
e ar Sm20%6 ar20:e 2047

which is bounded away from 0. On the other hand, this phenomenon only occurs on a very short
portion of v1(r), which suggests the following fi.

For a (very small) angle 6, > 0,8 we divide v,(r) into two parts, T'1(r) and Ty(r), where Ty is the
(very short) portion of 1 (r) where 0 < 0 < 6, and Iy is the portion of v1(r) where 0, < 0 < 7 /4.
The lengths of these two parts are

UTy(r)) =0,  and ((Da(r)) =r (% - 07,) <r

Next, for any 0 between 0 and /4, gmartsin2 < 1 (since sin 20 > 0) and therefore

/ eiaz2 dZ
Ti(r)

On the other hand, if /4 > 6 > 60, > 0, then sin 20 > sin 20, > 0 so

< UTy(r)) -1 =r0,.

o2 2
e or< sin 20 <e ar sm20r.

Furthermore, if 0 < 0, < 7/6, then sin20, > 0,9 and it follows that if 6, < 7/6, then

/ 6ia22 dZ
La(r)

Combining these two results, we have

/ eiaz2 dz / eiaz2 dz +/ 61‘0422 dz
y1(r) I'i(r) Ia(r)

< 6(].—12(7‘))670””2 sin 20, < Tefcw2 sin 260, < 7’670”297“

_ 2
<7l +re " 9’“,

= < +

/ eiaz2 dz / eiaz2 dz
Ti(r) I2(r)

$Which, as indicated, we choose to depend on r.

TBecause: (i) sin0 = 0 and (ii) (sin2z — x)’ > 0 for 0 < z < 7/6. Fill in the details.
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Finally, given € >0, if 0, = £/2r, then

rf, =¢/2 and re o 0r — po(oe/2r

Since re=" — 0 as r — oo for any ¢ > 0, it follows that (for fixed ) there is an R. such that
if r > R., then

—(ae/2)r _ &
re < —.
2
Hence, for r > R,
F 2 9 9
/ e dzl < =+ = =g,
() 22
and since € was arbitrary, it follows that
lim ei?® dy = 0,

r—00 ol (7‘)

as claimed.
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